.. _a-tour-of-sage:

==============
A Tour of Sage
==============

This is a tour of Sage that closely follows the tour of Mathematica
that is at the beginning of the Mathematica Book.


Sage as a Calculator
====================

The Sage command line has a ``sage:`` prompt; you do not have to add
it. If you use the Sage notebook, then put everything after the
``sage:`` prompt in an input cell, and press shift-enter to compute the
corresponding output.

::

    sage: 3 + 5
    8

The caret symbol means "raise to a power".

::

    sage: 57.1 ^ 100
    4.60904368661396e175

We compute the inverse of a :math:`2 \times 2` matrix in Sage.

::

    sage: matrix([[1,2], [3,4]])^(-1)
    [  -2    1]
    [ 3/2 -1/2]

Here we integrate a simple function.

::

    sage: x = var('x')   # create a symbolic variable
    sage: integrate(sqrt(x)*sqrt(1+x), x)
    1/4*((x + 1)^(3/2)/x^(3/2) + sqrt(x + 1)/sqrt(x))/((x + 1)^2/x^2 - 2*(x + 1)/x + 1) - 1/8*log(sqrt(x + 1)/sqrt(x) + 1) + 1/8*log(sqrt(x + 1)/sqrt(x) - 1)

This asks Sage to solve a quadratic equation. The symbol ``==``
represents equality in Sage.

::

    sage: a = var('a')
    sage: S = solve(x^2 + x == a, x); S
    [x == -1/2*sqrt(4*a + 1) - 1/2, x == 1/2*sqrt(4*a + 1) - 1/2]

The result is a list of equalities.

.. link

::

    sage: S[0].rhs()
    -1/2*sqrt(4*a + 1) - 1/2

Naturally, Sage can plot various useful functions.

::

    sage: show(plot(sin(x) + sin(1.6*x), 0, 40))

.. image:: sin_plot.*


Power Computing with Sage
=========================

First we create a :math:`500 \times 500` matrix of random
numbers.

::

    sage: m = random_matrix(RDF,500)

It takes Sage a few seconds to compute the eigenvalues of the
matrix and plot them.

.. link

::

    sage: e = m.eigenvalues()  #about 2 seconds
    sage: w = [(i, abs(e[i])) for i in range(len(e))]
    sage: show(points(w))

.. image:: eigen_plot.*


Thanks to the GNU Multiprecision Library (GMP), Sage can handle
very large numbers, even numbers with millions or billions of
digits.

::

    sage: factorial(100)
    93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
    sage: n = factorial(1000000)  #about 2.5 seconds

This computes at least 100 digits of :math:`\pi`.

::

    sage: N(pi, digits=100)
    3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068

This asks Sage to factor a polynomial in two variables.

::

    sage: R.<x,y> = QQ[]
    sage: F = factor(x^99 + y^99)
    sage: F
    (x + y) * (x^2 - x*y + y^2) * (x^6 - x^3*y^3 + y^6) *
    (x^10 - x^9*y + x^8*y^2 - x^7*y^3 + x^6*y^4 - x^5*y^5 +
     x^4*y^6 - x^3*y^7 + x^2*y^8 - x*y^9 + y^10) *
    (x^20 + x^19*y - x^17*y^3 - x^16*y^4 + x^14*y^6 + x^13*y^7 -
     x^11*y^9 - x^10*y^10 - x^9*y^11 + x^7*y^13 + x^6*y^14 -
     x^4*y^16 - x^3*y^17 + x*y^19 + y^20) * (x^60 + x^57*y^3 -
     x^51*y^9 - x^48*y^12 + x^42*y^18 + x^39*y^21 - x^33*y^27 -
     x^30*y^30 - x^27*y^33 + x^21*y^39 + x^18*y^42 - x^12*y^48 -
     x^9*y^51 + x^3*y^57 + y^60)
    sage: F.expand()
    x^99 + y^99

Sage takes just under 5 seconds to compute the numbers of ways to
partition one hundred million as a sum of positive integers.

::

    sage: z = Partitions(10^8).cardinality() #about 4.5 seconds
    sage: str(z)[:40]
    '1760517045946249141360373894679135204009'

Accessing Algorithms in Sage
============================

Whenever you use Sage you are accessing one of the world's largest
collections of open source computational algorithms.