Elliptic curves over padic fields¶
- class sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field(K, ainvs)¶
Bases:
sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
,sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
Elliptic curve over a padic field.
EXAMPLES:
sage: Qp=pAdicField(17) sage: E=EllipticCurve(Qp,[2,3]); E Elliptic Curve defined by y^2 = x^3 + (2+O(17^20))*x + (3+O(17^20)) over 17-adic Field with capped relative precision 20 sage: E == loads(dumps(E)) True
- frobenius(P=None)¶
Return the Frobenius as a function on the group of points of this elliptic curve.
EXAMPLES:
sage: Qp = pAdicField(13) sage: E = EllipticCurve(Qp,[1,1]) sage: type(E.frobenius()) <... 'function'> sage: point = E(0,1) sage: E.frobenius(point) (0 : 1 + O(13^20) : 1 + O(13^20))
Check that trac ticket #29709 is fixed:
sage: Qp = pAdicField(13) sage: E = EllipticCurve(Qp,[0,0,1,0,1]) sage: E.frobenius(E(1,1)) Traceback (most recent call last): ... NotImplementedError: Curve must be in weierstrass normal form. sage: E = EllipticCurve(Qp,[0,1,0,0,1]) sage: E.frobenius(E(0,1)) (0 : 1 + O(13^20) : 1 + O(13^20))