Jacobian of a general hyperelliptic curve¶
- class sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic(C)¶
Bases:
sage.schemes.jacobians.abstract_jacobian.Jacobian_generic
EXAMPLES:
sage: FF = FiniteField(2003) sage: R.<x> = PolynomialRing(FF) sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560 sage: C = HyperellipticCurve(f) sage: J = C.jacobian() sage: a = x**2 + 376*x + 245; b = 1015*x + 1368 sage: X = J(FF) sage: D = X([a,b]) sage: D (x^2 + 376*x + 245, y + 988*x + 635) sage: J(0) (1) sage: D == J([a,b]) True sage: D == D + J(0) True
An more extended example, demonstrating arithmetic in J(QQ) and J(K) for a number field K/QQ.
sage: P.<x> = PolynomialRing(QQ) sage: f = x^5 - x + 1; h = x sage: C = HyperellipticCurve(f,h,'u,v') sage: C Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1 sage: PP = C.ambient_space() sage: PP Projective Space of dimension 2 over Rational Field sage: C.defining_polynomial() -x0^5 + x0*x1*x2^3 + x1^2*x2^3 + x0*x2^4 - x2^5 sage: C(QQ) Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1 sage: K.<t> = NumberField(x^2-2) sage: C(K) Set of rational points of Hyperelliptic Curve over Number Field in t with defining polynomial x^2 - 2 defined by v^2 + u*v = u^5 - u + 1 sage: P = C(QQ)(0,1,1); P (0 : 1 : 1) sage: P == C(0,1,1) True sage: C(0,1,1).parent() Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1 sage: P1 = C(K)(P) sage: P2 = C(K)([2,4*t-1,1]) sage: P3 = C(K)([-1/2,1/8*(7*t+2),1]) sage: P1, P2, P3 ((0 : 1 : 1), (2 : 4*t - 1 : 1), (-1/2 : 7/8*t + 1/4 : 1)) sage: J = C.jacobian() sage: J Jacobian of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1 sage: Q = J(QQ)(P); Q (u, v - 1) sage: for i in range(6): Q*i (1) (u, v - 1) (u^2, v + u - 1) (u^2, v + 1) (u, v + 1) (1) sage: Q1 = J(K)(P1); print("%s -> %s"%( P1, Q1 )) (0 : 1 : 1) -> (u, v - 1) sage: Q2 = J(K)(P2); print("%s -> %s"%( P2, Q2 )) (2 : 4*t - 1 : 1) -> (u - 2, v - 4*t + 1) sage: Q3 = J(K)(P3); print("%s -> %s"%( P3, Q3 )) (-1/2 : 7/8*t + 1/4 : 1) -> (u + 1/2, v - 7/8*t - 1/4) sage: R.<x> = PolynomialRing(K) sage: Q4 = J(K)([x^2-t,R(1)]) sage: for i in range(4): Q4*i (1) (u^2 - t, v - 1) (u^2 + (-3/4*t - 9/16)*u + 1/2*t + 1/4, v + (-1/32*t - 57/64)*u + 1/2*t + 9/16) (u^2 + (1352416/247009*t - 1636930/247009)*u - 1156544/247009*t + 1900544/247009, v + (-2326345442/122763473*t + 3233153137/122763473)*u + 2439343104/122763473*t - 3350862929/122763473) sage: R2 = Q2*5; R2 (u^2 - 3789465233/116983808*u - 267915823/58491904, v + (-233827256513849/1789384327168*t + 1/2)*u - 15782925357447/894692163584*t) sage: R3 = Q3*5; R3 (u^2 + 5663300808399913890623/14426454798950909645952*u - 26531814176395676231273/28852909597901819291904, v + (253155440321645614070860868199103/2450498420175733688903836378159104*t + 1/2)*u + 2427708505064902611513563431764311/4900996840351467377807672756318208*t) sage: R4 = Q4*5; R4 (u^2 - 3789465233/116983808*u - 267915823/58491904, v + (233827256513849/1789384327168*t + 1/2)*u + 15782925357447/894692163584*t)
Thus we find the following identity:
sage: 5*Q2 + 5*Q4 (1)
Moreover the following relation holds in the 5-torsion subgroup:
sage: Q2 + Q4 == 2*Q1 True
- dimension()¶
Return the dimension of this Jacobian.
OUTPUT:
Integer
EXAMPLES:
sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a).jacobian().dimension() 1 sage: g = HyperellipticCurve(x^6 + x - 1, x+a).jacobian().dimension(); g 2 sage: type(g) <... 'sage.rings.integer.Integer'>
- point(mumford, check=True)¶