Complex Interpolation¶
AUTHORS:
Ethan Van Andel (2009): initial version
Development supported by NSF award No. 0702939.
- class sage.calculus.interpolators.CCSpline¶
Bases:
object
A
CCSpline
object contains a cubic interpolation of a figure in the complex plane.EXAMPLES:
A simple
square
:sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: cs = complex_cubic_spline(pts) sage: cs.value(0) (-1-1j) sage: cs.derivative(0) (0.9549296...-0.9549296...j)
- derivative(t)¶
Return the derivative (speed and direction of the curve) of a given point from the parameter
t
.INPUT:
t
– double, the parameter value for the parameterized curve, between 0 and 2*pi.
OUTPUT:
A complex number representing the derivative at the point on the figure corresponding to the input
t
.EXAMPLES:
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: cs = complex_cubic_spline(pts) sage: cs.derivative(3 / 5) (1.40578892327...-0.225417136326...j) sage: cs.derivative(0) - cs.derivative(2 * pi) 0j sage: cs.derivative(-6) (2.52047692949...-1.89392588310...j)
- value(t)¶
Return the location of a given point from the parameter
t
.INPUT:
t
– double, the parameter value for the parameterized curve, between 0 and 2*pi.
OUTPUT:
A complex number representing the point on the figure corresponding to the input
t
.EXAMPLES:
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: cs = complex_cubic_spline(pts) sage: cs.value(4 / 7) (-0.303961332787...-1.34716728183...j) sage: cs.value(0) - cs.value(2*pi) 0j sage: cs.value(-2.73452) (0.934561222231...+0.881366116402...j)
- class sage.calculus.interpolators.PSpline¶
Bases:
object
A
CCSpline
object contains a polygon interpolation of a figure in the complex plane.EXAMPLES:
A simple
square
:sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: ps = polygon_spline(pts) sage: ps.value(0) (-1-1j) sage: ps.derivative(0) (1.27323954...+0j)
- derivative(t)¶
Return the derivative (speed and direction of the curve) of a given point from the parameter
t
.INPUT:
t
– double, the parameter value for the parameterized curve, between 0 and 2*pi.
OUTPUT:
A complex number representing the derivative at the point on the polygon corresponding to the input
t
.EXAMPLES:
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: ps = polygon_spline(pts) sage: ps.derivative(1 / 3) (1.27323954473...+0j) sage: ps.derivative(0) - ps.derivative(2*pi) 0j sage: ps.derivative(10) (-1.27323954473...+0j)
- value(t)¶
Return the derivative (speed and direction of the curve) of a given point from the parameter
t
.INPUT:
t
– double, the parameter value for the parameterized curve, between 0 and 2*pi.
OUTPUT:
A complex number representing the point on the polygon corresponding to the input
t
.EXAMPLES:
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: ps = polygon_spline(pts) sage: ps.value(.5) (-0.363380227632...-1j) sage: ps.value(0) - ps.value(2*pi) 0j sage: ps.value(10) (0.26760455264...+1j)
- sage.calculus.interpolators.complex_cubic_spline(pts)¶
Creates a cubic spline interpolated figure from a set of complex or \((x,y)\) points. The figure will be a parametric curve from 0 to 2*pi. The returned values will be complex, not \((x,y)\).
INPUT:
pts
A list or array of complex numbers, or tuples of the form \((x,y)\).
EXAMPLES:
A simple
square
:sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: cs = complex_cubic_spline(pts) sage: fx = lambda x: cs.value(x).real sage: fy = lambda x: cs.value(x).imag sage: show(parametric_plot((fx, fy), (0, 2*pi))) sage: m = Riemann_Map([lambda x: cs.value(real(x))], [lambda x: cs.derivative(real(x))], 0) sage: show(m.plot_colored() + m.plot_spiderweb())
Polygon approximation of a circle:
sage: pts = [e^(I*t / 25) for t in range(25)] sage: cs = complex_cubic_spline(pts) sage: cs.derivative(2) (-0.0497765406583...+0.151095006434...j)
- sage.calculus.interpolators.polygon_spline(pts)¶
Creates a polygon from a set of complex or \((x,y)\) points. The polygon will be a parametric curve from 0 to 2*pi. The returned values will be complex, not \((x,y)\).
INPUT:
pts
– A list or array of complex numbers of tuples of the form \((x,y)\).
EXAMPLES:
A simple square:
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)] sage: ps = polygon_spline(pts) sage: fx = lambda x: ps.value(x).real sage: fy = lambda x: ps.value(x).imag sage: show(parametric_plot((fx, fy), (0, 2*pi))) sage: m = Riemann_Map([lambda x: ps.value(real(x))], [lambda x: ps.derivative(real(x))],0) sage: show(m.plot_colored() + m.plot_spiderweb())
Polygon approximation of an circle:
sage: pts = [e^(I*t / 25) for t in range(25)] sage: ps = polygon_spline(pts) sage: ps.derivative(2) (-0.0470303661...+0.1520363883...j)