Coalgebras with basis¶
- class sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
The category of coalgebras with a distinguished basis.
EXAMPLES:
sage: CoalgebrasWithBasis(ZZ) Category of coalgebras with basis over Integer Ring sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str) [Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring]
- class ElementMethods¶
Bases:
object
- coproduct_iterated(n=1)¶
Apply
n
coproducts toself
.Todo
Remove dependency on
modules_with_basis
methods.EXAMPLES:
sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi() sage: Psi[2,2].coproduct_iterated(0) Psi[2, 2] sage: Psi[2,2].coproduct_iterated(2) Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2] + Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2] + 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[]
- class Filtered(base_category)¶
Bases:
sage.categories.filtered_modules.FilteredModulesCategory
Category of filtered coalgebras.
- class ParentMethods¶
Bases:
object
- coproduct()¶
If
coproduct_on_basis()
is available, construct the coproduct morphism fromself
toself
\(\otimes\)self
by extending it by linearity. Otherwise, usecoproduct_by_coercion()
, if available.EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: [a,b] = A.algebra_generators() sage: a, A.coproduct(a) (B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)]) sage: b, A.coproduct(b) (B[(1,3)], B[(1,3)] # B[(1,3)])
- coproduct_on_basis(i)¶
The coproduct of the algebra on the basis (optional).
INPUT:
i
– the indices of an element of the basis ofself
Returns the coproduct of the corresponding basis elements If implemented, the coproduct of the algebra is defined from it by linearity.
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() sage: A.coproduct_on_basis(a) B[(1,2,3)] # B[(1,2,3)]
- counit()¶
If
counit_on_basis()
is available, construct the counit morphism fromself
toself
\(\otimes\)self
by extending it by linearityEXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: [a,b] = A.algebra_generators() sage: a, A.counit(a) (B[(1,2,3)], 1) sage: b, A.counit(b) (B[(1,3)], 1)
- counit_on_basis(i)¶
The counit of the algebra on the basis (optional).
INPUT:
i
– the indices of an element of the basis ofself
Returns the counit of the corresponding basis elements If implemented, the counit of the algebra is defined from it by linearity.
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() sage: A.counit_on_basis(a) 1
- class Super(base_category)¶
Bases:
sage.categories.super_modules.SuperModulesCategory
- extra_super_categories()¶
EXAMPLES:
sage: C = Coalgebras(ZZ).WithBasis().Super() sage: sorted(C.super_categories(), key=str) # indirect doctest [Category of graded coalgebras with basis over Integer Ring, Category of super coalgebras over Integer Ring, Category of super modules with basis over Integer Ring]