Crystals¶
- class sage.categories.crystals.CrystalHomset(X, Y, category=None)¶
Bases:
sage.categories.homset.Homset
The set of crystal morphisms from one crystal to another.
An \(U_q(\mathfrak{g})\) \(I\)-crystal morphism \(\Psi : B \to C\) is a map \(\Psi : B \cup \{ 0 \} \to C \cup \{ 0 \}\) such that:
\(\Psi(0) = 0\).
If \(b \in B\) and \(\Psi(b) \in C\), then \(\mathrm{wt}(\Psi(b)) = \mathrm{wt}(b)\), \(\varepsilon_i(\Psi(b)) = \varepsilon_i(b)\), and \(\varphi_i(\Psi(b)) = \varphi_i(b)\) for all \(i \in I\).
If \(b, b^{\prime} \in B\), \(\Psi(b), \Psi(b^{\prime}) \in C\) and \(f_i b = b^{\prime}\), then \(f_i \Psi(b) = \Psi(b^{\prime})\) and \(\Psi(b) = e_i \Psi(b^{\prime})\) for all \(i \in I\).
If the Cartan type is unambiguous, it is suppressed from the notation.
We can also generalize the definition of a crystal morphism by considering a map of \(\sigma\) of the (now possibly different) Dynkin diagrams corresponding to \(B\) and \(C\) along with scaling factors \(\gamma_i \in \ZZ\) for \(i \in I\). Let \(\sigma_i\) denote the orbit of \(i\) under \(\sigma\). We write objects for \(B\) as \(X\) with corresponding objects of \(C\) as \(\widehat{X}\). Then a virtual crystal morphism \(\Psi\) is a map such that the following holds:
\(\Psi(0) = 0\).
If \(b \in B\) and \(\Psi(b) \in C\), then for all \(j \in \sigma_i\):
\[\varepsilon_i(b) = \frac{1}{\gamma_j} \widehat{\varepsilon}_j(\Psi(b)), \quad \varphi_i(b) = \frac{1}{\gamma_j} \widehat{\varphi}_j(\Psi(b)), \quad \mathrm{wt}(\Psi(b)) = \sum_i c_i \sum_{j \in \sigma_i} \gamma_j \widehat{\Lambda}_j,\]where \(\mathrm{wt}(b) = \sum_i c_i \Lambda_i\).
If \(b, b^{\prime} \in B\), \(\Psi(b), \Psi(b^{\prime}) \in C\) and \(f_i b = b^{\prime}\), then independent of the ordering of \(\sigma_i\) we have:
\[\Psi(b^{\prime}) = e_i \Psi(b) = \prod_{j \in \sigma_i} \widehat{e}_j^{\gamma_i} \Psi(b), \quad \Psi(b^{\prime}) = f_i \Psi(b) = \prod_{j \in \sigma_i} \widehat{f}_j^{\gamma_i} \Psi(b).\]
If \(\gamma_i = 1\) for all \(i \in I\) and the Dynkin diagrams are the same, then we call \(\Psi\) a twisted crystal morphism.
INPUT:
X
– the domainY
– the codomaincategory
– (optional) the category of the crystal morphisms
See also
For the construction of an element of the homset, see
CrystalMorphismByGenerators
andcrystal_morphism()
.EXAMPLES:
We begin with the natural embedding of \(B(2\Lambda_1)\) into \(B(\Lambda_1) \otimes B(\Lambda_1)\) in type \(A_1\):
sage: B = crystals.Tableaux(['A',1], shape=[2]) sage: F = crystals.Tableaux(['A',1], shape=[1]) sage: T = crystals.TensorProduct(F, F) sage: v = T.highest_weight_vectors()[0]; v [[[1]], [[1]]] sage: H = Hom(B, T) sage: psi = H([v]) sage: b = B.highest_weight_vector(); b [[1, 1]] sage: psi(b) [[[1]], [[1]]] sage: b.f(1) [[1, 2]] sage: psi(b.f(1)) [[[1]], [[2]]]
We now look at the decomposition of \(B(\Lambda_1) \otimes B(\Lambda_1)\) into \(B(2\Lambda_1) \oplus B(0)\):
sage: B0 = crystals.Tableaux(['A',1], shape=[]) sage: D = crystals.DirectSum([B, B0]) sage: H = Hom(T, D) sage: psi = H(D.module_generators) sage: psi ['A', 1] Crystal morphism: From: Full tensor product of the crystals [The crystal of tableaux of type ['A', 1] and shape(s) [[1]], The crystal of tableaux of type ['A', 1] and shape(s) [[1]]] To: Direct sum of the crystals Family (The crystal of tableaux of type ['A', 1] and shape(s) [[2]], The crystal of tableaux of type ['A', 1] and shape(s) [[]]) Defn: [[[1]], [[1]]] |--> [[1, 1]] [[[2]], [[1]]] |--> [] sage: psi.is_isomorphism() True
We can always construct the trivial morphism which sends everything to \(0\):
sage: Binf = crystals.infinity.Tableaux(['B', 2]) sage: B = crystals.Tableaux(['B',2], shape=[1]) sage: H = Hom(Binf, B) sage: psi = H(lambda x: None) sage: psi(Binf.highest_weight_vector())
For Kirillov-Reshetikhin crystals, we consider the map to the corresponding classical crystal:
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1) sage: B = K.classical_decomposition() sage: H = Hom(K, B) sage: psi = H(lambda x: x.lift(), cartan_type=['D',4]) sage: L = [psi(mg) for mg in K.module_generators]; L [[], [[1], [2]]] sage: all(x.parent() == B for x in L) True
Next we consider a type \(D_4\) crystal morphism where we twist by \(3 \leftrightarrow 4\):
sage: B = crystals.Tableaux(['D',4], shape=[1]) sage: H = Hom(B, B) sage: d = {1:1, 2:2, 3:4, 4:3} sage: psi = H(B.module_generators, automorphism=d) sage: b = B.highest_weight_vector() sage: b.f_string([1,2,3]) [[4]] sage: b.f_string([1,2,4]) [[-4]] sage: psi(b.f_string([1,2,3])) [[-4]] sage: psi(b.f_string([1,2,4])) [[4]]
We construct the natural virtual embedding of a type \(B_3\) into a type \(D_4\) crystal:
sage: B = crystals.Tableaux(['B',3], shape=[1]) sage: C = crystals.Tableaux(['D',4], shape=[2]) sage: H = Hom(B, C) sage: psi = H(C.module_generators) sage: psi ['B', 3] -> ['D', 4] Virtual Crystal morphism: From: The crystal of tableaux of type ['B', 3] and shape(s) [[1]] To: The crystal of tableaux of type ['D', 4] and shape(s) [[2]] Defn: [[1]] |--> [[1, 1]] sage: for b in B: print("{} |--> {}".format(b, psi(b))) [[1]] |--> [[1, 1]] [[2]] |--> [[2, 2]] [[3]] |--> [[3, 3]] [[0]] |--> [[3, -3]] [[-3]] |--> [[-3, -3]] [[-2]] |--> [[-2, -2]] [[-1]] |--> [[-1, -1]]
- Element¶
alias of
CrystalMorphismByGenerators
- class sage.categories.crystals.CrystalMorphism(parent, cartan_type=None, virtualization=None, scaling_factors=None)¶
Bases:
sage.categories.morphism.Morphism
A crystal morphism.
INPUT:
parent
– a homsetcartan_type
– (optional) a Cartan type; the default is the Cartan type of the domainvirtualization
– (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomainscaling_factors
– (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\)
- cartan_type()¶
Return the Cartan type of
self
.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: psi = Hom(B, B).an_element() sage: psi.cartan_type() ['A', 2]
- is_injective()¶
Return if
self
is an injective crystal morphism.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: psi = Hom(B, B).an_element() sage: psi.is_injective() False
- is_surjective()¶
Check if
self
is a surjective crystal morphism.EXAMPLES:
sage: B = crystals.Tableaux(['C',2], shape=[1,1]) sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1])) sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C) sage: psi.is_surjective() False sage: im_gens = [None, B.module_generators[0]] sage: psi = C.crystal_morphism(im_gens, codomain=B) sage: psi.is_surjective() True sage: C = crystals.Tableaux(['A',2], shape=[2,1]) sage: B = crystals.infinity.Tableaux(['A',2]) sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights() sage: W = crystals.elementary.T(['A',2], La[1]+La[2]) sage: T = W.tensor(B) sage: mg = T(W.module_generators[0], B.module_generators[0]) sage: psi = Hom(C,T)([mg]) sage: psi.is_surjective() False
- scaling_factors()¶
Return the scaling factors \(\gamma_i\).
EXAMPLES:
sage: B = crystals.Tableaux(['B',3], shape=[1]) sage: C = crystals.Tableaux(['D',4], shape=[2]) sage: psi = B.crystal_morphism(C.module_generators) sage: psi.scaling_factors() Finite family {1: 2, 2: 2, 3: 1}
- virtualization()¶
Return the virtualization sets \(\sigma_i\).
EXAMPLES:
sage: B = crystals.Tableaux(['B',3], shape=[1]) sage: C = crystals.Tableaux(['D',4], shape=[2]) sage: psi = B.crystal_morphism(C.module_generators) sage: psi.virtualization() Finite family {1: (1,), 2: (2,), 3: (3, 4)}
- class sage.categories.crystals.CrystalMorphismByGenerators(parent, on_gens, cartan_type=None, virtualization=None, scaling_factors=None, gens=None, check=True)¶
Bases:
sage.categories.crystals.CrystalMorphism
A crystal morphism defined by a set of generators which create a virtual crystal inside the codomain.
INPUT:
parent
– a homseton_gens
– a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain underself
cartan_type
– (optional) a Cartan type; the default is the Cartan type of the domainvirtualization
– (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomainscaling_factors
– (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\)gens
– (optional) a finite list of generators to define the morphism; the default is to use the highest weight vectors of the crystalcheck
– (default:True
) check if the crystal morphism is valid
- im_gens()¶
Return the image of the generators of
self
as a tuple.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: F = crystals.Tableaux(['A',2], shape=[1]) sage: T = crystals.TensorProduct(F, F, F) sage: H = Hom(T, B) sage: b = B.highest_weight_vector() sage: psi = H((None, b, b, None), generators=T.highest_weight_vectors()) sage: psi.im_gens() (None, [[1, 1], [2]], [[1, 1], [2]], None)
- image()¶
Return the image of
self
in the codomain as aSubcrystal
.Warning
This assumes that
self
is a strict crystal morphism.EXAMPLES:
sage: B = crystals.Tableaux(['B',3], shape=[1]) sage: C = crystals.Tableaux(['D',4], shape=[2]) sage: H = Hom(B, C) sage: psi = H(C.module_generators) sage: psi.image() Virtual crystal of The crystal of tableaux of type ['D', 4] and shape(s) [[2]] of type ['B', 3]
- to_module_generator(x)¶
Return a generator
mg
and a path of \(e_i\) and \(f_i\) operations tomg
.OUTPUT:
A tuple consisting of:
a module generator,
a list of
'e'
and'f'
to denote which operation, anda list of matching indices.
EXAMPLES:
sage: B = crystals.elementary.Elementary(['A',2], 2) sage: psi = B.crystal_morphism(B.module_generators) sage: psi.to_module_generator(B(4)) (0, ['f', 'f', 'f', 'f'], [2, 2, 2, 2]) sage: psi.to_module_generator(B(-2)) (0, ['e', 'e'], [2, 2])
- class sage.categories.crystals.Crystals(s=None)¶
Bases:
sage.categories.category_singleton.Category_singleton
The category of crystals.
See
sage.combinat.crystals.crystals
for an introduction to crystals.EXAMPLES:
sage: C = Crystals() sage: C Category of crystals sage: C.super_categories() [Category of... enumerated sets] sage: C.example() Highest weight crystal of type A_3 of highest weight omega_1
Parents in this category should implement the following methods:
either an attribute
_cartan_type
or a methodcartan_type
module_generators
: a list (or container) of distinct elements which generate the crystal using \(f_i\)
Furthermore, their elements
x
should implement the following methods:x.e(i)
(returning \(e_i(x)\))x.f(i)
(returning \(f_i(x)\))x.epsilon(i)
(returning \(\varepsilon_i(x)\))x.phi(i)
(returning \(\varphi_i(x)\))
EXAMPLES:
sage: from sage.misc.abstract_method import abstract_methods_of_class sage: abstract_methods_of_class(Crystals().element_class) {'optional': [], 'required': ['e', 'epsilon', 'f', 'phi', 'weight']}
- class ElementMethods¶
Bases:
object
- Epsilon()¶
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(0).Epsilon() (0, 0, 0, 0, 0, 0) sage: C(1).Epsilon() (0, 0, 0, 0, 0, 0) sage: C(2).Epsilon() (1, 0, 0, 0, 0, 0)
- Phi()¶
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(0).Phi() (0, 0, 0, 0, 0, 0) sage: C(1).Phi() (1, 0, 0, 0, 0, 0) sage: C(2).Phi() (1, 1, 0, 0, 0, 0)
- all_paths_to_highest_weight(index_set=None)¶
Iterate over all paths to the highest weight from
self
with respect to \(index_set\).INPUT:
index_set
– (optional) a subset of the index set ofself
EXAMPLES:
sage: B = crystals.infinity.Tableaux("A2") sage: b0 = B.highest_weight_vector() sage: b = b0.f_string([1, 2, 1, 2]) sage: L = b.all_paths_to_highest_weight() sage: list(L) [[2, 1, 2, 1], [2, 2, 1, 1]] sage: Y = crystals.infinity.GeneralizedYoungWalls(3) sage: y0 = Y.highest_weight_vector() sage: y = y0.f_string([0, 1, 2, 3, 2, 1, 0]) sage: list(y.all_paths_to_highest_weight()) [[0, 1, 2, 3, 2, 1, 0], [0, 1, 3, 2, 2, 1, 0], [0, 3, 1, 2, 2, 1, 0], [0, 3, 2, 1, 1, 0, 2], [0, 3, 2, 1, 1, 2, 0]] sage: B = crystals.Tableaux("A3", shape=[4,2,1]) sage: b0 = B.highest_weight_vector() sage: b = b0.f_string([1, 1, 2, 3]) sage: list(b.all_paths_to_highest_weight()) [[1, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1]]
- cartan_type()¶
Returns the Cartan type associated to
self
EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: C(1).cartan_type() ['A', 5]
- e(i)¶
Return \(e_i\) of
self
if it exists orNone
otherwise.This method should be implemented by the element class of the crystal.
EXAMPLES:
sage: C = Crystals().example(5) sage: x = C[2]; x 3 sage: x.e(1), x.e(2), x.e(3) (None, 2, None)
- e_string(list)¶
Applies \(e_{i_r} \cdots e_{i_1}\) to self for
list
as \([i_1, ..., i_r]\)EXAMPLES:
sage: C = crystals.Letters(['A',3]) sage: b = C(3) sage: b.e_string([2,1]) 1 sage: b.e_string([1,2])
- epsilon(i)¶
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).epsilon(1) 0 sage: C(2).epsilon(1) 1
- f(i)¶
Return \(f_i\) of
self
if it exists orNone
otherwise.This method should be implemented by the element class of the crystal.
EXAMPLES:
sage: C = Crystals().example(5) sage: x = C[1]; x 2 sage: x.f(1), x.f(2), x.f(3) (None, 3, None)
- f_string(list)¶
Applies \(f_{i_r} \cdots f_{i_1}\) to self for
list
as \([i_1, ..., i_r]\)EXAMPLES:
sage: C = crystals.Letters(['A',3]) sage: b = C(1) sage: b.f_string([1,2]) 3 sage: b.f_string([2,1])
- index_set()¶
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).index_set() (1, 2, 3, 4, 5)
- is_highest_weight(index_set=None)¶
Returns
True
ifself
is a highest weight. Specifying the optionindex_set
to be a subset \(I\) of the index set of the underlying crystal, finds all highest weight vectors for arrows in \(I\).EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).is_highest_weight() True sage: C(2).is_highest_weight() False sage: C(2).is_highest_weight(index_set = [2,3,4,5]) True
- is_lowest_weight(index_set=None)¶
Returns
True
ifself
is a lowest weight. Specifying the optionindex_set
to be a subset \(I\) of the index set of the underlying crystal, finds all lowest weight vectors for arrows in \(I\).EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).is_lowest_weight() False sage: C(6).is_lowest_weight() True sage: C(4).is_lowest_weight(index_set = [1,3]) True
- phi(i)¶
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).phi(1) 1 sage: C(2).phi(1) 0
- phi_minus_epsilon(i)¶
Return \(\varphi_i - \varepsilon_i\) of
self
.There are sometimes better implementations using the weight for this. It is used for reflections along a string.
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).phi_minus_epsilon(1) 1
- s(i)¶
Return the reflection of
self
along its \(i\)-string.EXAMPLES:
sage: C = crystals.Tableaux(['A',2], shape=[2,1]) sage: b = C(rows=[[1,1],[3]]) sage: b.s(1) [[2, 2], [3]] sage: b = C(rows=[[1,2],[3]]) sage: b.s(2) [[1, 2], [3]] sage: T = crystals.Tableaux(['A',2],shape=[4]) sage: t = T(rows=[[1,2,2,2]]) sage: t.s(1) [[1, 1, 1, 2]]
- subcrystal(index_set=None, max_depth=inf, direction='both', contained=None, cartan_type=None, category=None)¶
Construct the subcrystal generated by
self
using \(e_i\) and/or \(f_i\) for all \(i\) inindex_set
.INPUT:
index_set
– (default:None
) the index set; ifNone
then use the index set of the crystalmax_depth
– (default: infinity) the maximum depth to builddirection
– (default:'both'
) the direction to build the subcrystal; it can be one of the following:'both'
- using both \(e_i\) and \(f_i\)'upper'
- using \(e_i\)'lower'
- using \(f_i\)
contained
– (optional) a set (or function) defining the containment in the subcrystalcartan_type
– (optional) specify the Cartan type of the subcrystalcategory
– (optional) specify the category of the subcrystal
See also
EXAMPLES:
sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2) sage: elt = C(1,4) sage: list(elt.subcrystal(index_set=[1,3])) [[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]] sage: list(elt.subcrystal(index_set=[1,3], max_depth=1)) [[[1, 4]], [[2, 4]], [[1, 3]]] sage: list(elt.subcrystal(index_set=[1,3], direction='upper')) [[[1, 4]], [[1, 3]]] sage: list(elt.subcrystal(index_set=[1,3], direction='lower')) [[[1, 4]], [[2, 4]]]
- tensor(*elts)¶
Return the tensor product of
self
with the crystal elementselts
.EXAMPLES:
sage: C = crystals.Letters(['A', 3]) sage: B = crystals.infinity.Tableaux(['A', 3]) sage: c = C[0] sage: b = B.highest_weight_vector() sage: t = c.tensor(c, b) sage: ascii_art(t) 1 1 1 1 # 1 # 2 2 3 sage: tensor([c, c, b]) == t True sage: ascii_art(tensor([b, b, c])) 1 1 1 1 1 1 2 2 # 2 2 # 1 3 3
- to_highest_weight(index_set=None)¶
Return the highest weight element \(u\) and a list \([i_1,...,i_k]\) such that \(self = f_{i_1} ... f_{i_k} u\), where \(i_1,...,i_k\) are elements in \(index_set\). By default the index set is assumed to be the full index set of self.
EXAMPLES:
sage: T = crystals.Tableaux(['A',3], shape = [1]) sage: t = T(rows = [[3]]) sage: t.to_highest_weight() [[[1]], [2, 1]] sage: T = crystals.Tableaux(['A',3], shape = [2,1]) sage: t = T(rows = [[1,2],[4]]) sage: t.to_highest_weight() [[[1, 1], [2]], [1, 3, 2]] sage: t.to_highest_weight(index_set = [3]) [[[1, 2], [3]], [3]] sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1) sage: t = K(rows=[[2],[3]]); t.to_highest_weight(index_set=[1]) [[[1], [3]], [1]] sage: t.to_highest_weight() Traceback (most recent call last): ... ValueError: This is not a highest weight crystals!
- to_lowest_weight(index_set=None)¶
Return the lowest weight element \(u\) and a list \([i_1,...,i_k]\) such that \(self = e_{i_1} ... e_{i_k} u\), where \(i_1,...,i_k\) are elements in \(index_set\). By default the index set is assumed to be the full index set of self.
EXAMPLES:
sage: T = crystals.Tableaux(['A',3], shape = [1]) sage: t = T(rows = [[3]]) sage: t.to_lowest_weight() [[[4]], [3]] sage: T = crystals.Tableaux(['A',3], shape = [2,1]) sage: t = T(rows = [[1,2],[4]]) sage: t.to_lowest_weight() [[[3, 4], [4]], [1, 2, 2, 3]] sage: t.to_lowest_weight(index_set = [3]) [[[1, 2], [4]], []] sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1) sage: t = K.module_generator(); t [[1], [2]] sage: t.to_lowest_weight(index_set=[1,2,3]) [[[3], [4]], [2, 1, 3, 2]] sage: t.to_lowest_weight() Traceback (most recent call last): ... ValueError: This is not a highest weight crystals!
- weight()¶
Return the weight of this crystal element.
This method should be implemented by the element class of the crystal.
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C(1).weight() (1, 0, 0, 0, 0, 0)
- Finite¶
- class MorphismMethods¶
Bases:
object
- is_embedding()¶
Check if
self
is an injective crystal morphism.EXAMPLES:
sage: B = crystals.Tableaux(['C',2], shape=[1,1]) sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1])) sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C) sage: psi.is_embedding() True sage: C = crystals.Tableaux(['A',2], shape=[2,1]) sage: B = crystals.infinity.Tableaux(['A',2]) sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights() sage: W = crystals.elementary.T(['A',2], La[1]+La[2]) sage: T = W.tensor(B) sage: mg = T(W.module_generators[0], B.module_generators[0]) sage: psi = Hom(C,T)([mg]) sage: psi.is_embedding() True
- is_isomorphism()¶
Check if
self
is a crystal isomorphism.EXAMPLES:
sage: B = crystals.Tableaux(['C',2], shape=[1,1]) sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1])) sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C) sage: psi.is_isomorphism() False
- is_strict()¶
Check if
self
is a strict crystal morphism.EXAMPLES:
sage: B = crystals.Tableaux(['C',2], shape=[1,1]) sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1])) sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C) sage: psi.is_strict() True
- class ParentMethods¶
Bases:
object
- Lambda()¶
Returns the fundamental weights in the weight lattice realization for the root system associated with the crystal
EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: C.Lambda() Finite family {1: (1, 0, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0, 0), 3: (1, 1, 1, 0, 0, 0), 4: (1, 1, 1, 1, 0, 0), 5: (1, 1, 1, 1, 1, 0)}
- an_element()¶
Returns an element of
self
sage: C = crystals.Letters([‘A’, 5]) sage: C.an_element() 1
- cartan_type()¶
Returns the Cartan type of the crystal
EXAMPLES:
sage: C = crystals.Letters(['A',2]) sage: C.cartan_type() ['A', 2]
- connected_components()¶
Return the connected components of
self
as subcrystals.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(B,C) sage: T.connected_components() [Subcrystal of Full tensor product of the crystals [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]], The crystal of letters for type ['A', 2]], Subcrystal of Full tensor product of the crystals [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]], The crystal of letters for type ['A', 2]], Subcrystal of Full tensor product of the crystals [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]], The crystal of letters for type ['A', 2]]]
- connected_components_generators()¶
Return a tuple of generators for each of the connected components of
self
.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(B,C) sage: T.connected_components_generators() ([[[1, 1], [2]], 1], [[[1, 2], [2]], 1], [[[1, 2], [3]], 1])
- crystal_morphism(on_gens, codomain=None, cartan_type=None, index_set=None, generators=None, automorphism=None, virtualization=None, scaling_factors=None, category=None, check=True)¶
Construct a crystal morphism from
self
to another crystalcodomain
.INPUT:
on_gens
– a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) ofself
under the crystal morphismcodomain
– (default:self
) the codomain of the morphismcartan_type
– (optional) the Cartan type of the morphism; the default is the Cartan type ofself
index_set
– (optional) the index set of the morphism; the default is the index set of the Cartan typegenerators
– (optional) the generators to define the morphism; the default is the generators ofself
automorphism
– (optional) the automorphism to perform the twistingvirtualization
– (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain; the default is the identity dictionaryscaling_factors
– (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\); the default are all scaling factors to be onecategory
– (optional) the category for the crystal morphism; the default is the category ofCrystals
.check
– (default:True
) check if the crystal morphism is valid
See also
For more examples, see
sage.categories.crystals.CrystalHomset
.EXAMPLES:
We construct the natural embedding of a crystal using tableaux into the tensor product of single boxes via the reading word:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: F = crystals.Tableaux(['A',2], shape=[1]) sage: T = crystals.TensorProduct(F, F, F) sage: mg = T.highest_weight_vectors()[2]; mg [[[1]], [[2]], [[1]]] sage: psi = B.crystal_morphism([mg], codomain=T); psi ['A', 2] Crystal morphism: From: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]] To: Full tensor product of the crystals [The crystal of tableaux of type ['A', 2] and shape(s) [[1]], The crystal of tableaux of type ['A', 2] and shape(s) [[1]], The crystal of tableaux of type ['A', 2] and shape(s) [[1]]] Defn: [[1, 1], [2]] |--> [[[1]], [[2]], [[1]]] sage: b = B.module_generators[0] sage: b.pp() 1 1 2 sage: psi(b) [[[1]], [[2]], [[1]]] sage: psi(b.f(2)) [[[1]], [[3]], [[1]]] sage: psi(b.f_string([2,1,1])) [[[2]], [[3]], [[2]]] sage: lw = b.to_lowest_weight()[0] sage: lw.pp() 2 3 3 sage: psi(lw) [[[3]], [[3]], [[2]]] sage: psi(lw) == mg.to_lowest_weight()[0] True
We now take the other isomorphic highest weight component in the tensor product:
sage: mg = T.highest_weight_vectors()[1]; mg [[[2]], [[1]], [[1]]] sage: psi = B.crystal_morphism([mg], codomain=T) sage: psi(lw) [[[3]], [[2]], [[3]]]
We construct a crystal morphism of classical crystals using a Kirillov-Reshetikhin crystal:
sage: B = crystals.Tableaux(['D', 4], shape=[1,1]) sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2) sage: K.module_generators [[], [[1], [2]], [[1, 1], [2, 2]]] sage: v = K.module_generators[1] sage: psi = B.crystal_morphism([v], codomain=K, category=FiniteCrystals()) sage: psi ['D', 4] -> ['D', 4, 1] Virtual Crystal morphism: From: The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1]] To: Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(2,2) Defn: [[1], [2]] |--> [[1], [2]] sage: b = B.module_generators[0] sage: psi(b) [[1], [2]] sage: psi(b.to_lowest_weight()[0]) [[-2], [-1]]
We can define crystal morphisms using a different set of generators. For example, we construct an example using the lowest weight vector:
sage: B = crystals.Tableaux(['A',2], shape=[1]) sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(['A',2], La[2]) sage: Bp = T.tensor(B) sage: C = crystals.Tableaux(['A',2], shape=[2,1]) sage: x = C.module_generators[0].f_string([1,2]) sage: psi = Bp.crystal_morphism([x], generators=Bp.lowest_weight_vectors()) sage: psi(Bp.highest_weight_vector()) [[1, 1], [2]]
We can also use a dictionary to specify the generators and their images:
sage: psi = Bp.crystal_morphism({Bp.lowest_weight_vectors()[0]: x}) sage: psi(Bp.highest_weight_vector()) [[1, 1], [2]]
We construct a twisted crystal morphism induced from the diagram automorphism of type \(A_3^{(1)}\):
sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights() sage: B0 = crystals.GeneralizedYoungWalls(3, La[0]) sage: B1 = crystals.GeneralizedYoungWalls(3, La[1]) sage: phi = B0.crystal_morphism(B1.module_generators, automorphism={0:1, 1:2, 2:3, 3:0}) sage: phi ['A', 3, 1] Twisted Crystal morphism: From: Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[0] To: Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[1] Defn: [] |--> [] sage: x = B0.module_generators[0].f_string([0,1,2,3]); x [[0, 3], [1], [2]] sage: phi(x) [[], [1, 0], [2], [3]]
We construct a virtual crystal morphism from type \(G_2\) into type \(D_4\):
sage: D = crystals.Tableaux(['D',4], shape=[1,1]) sage: G = crystals.Tableaux(['G',2], shape=[1]) sage: psi = G.crystal_morphism(D.module_generators, ....: virtualization={1:[2],2:[1,3,4]}, ....: scaling_factors={1:1, 2:1}) sage: for x in G: ....: ascii_art(x, psi(x), sep=' |--> ') ....: print("") 1 1 |--> 2 1 2 |--> 3 2 3 |--> -3 3 0 |--> -3 3 -3 |--> -2 -3 -2 |--> -1 -2 -1 |--> -1
- digraph(subset=None, index_set=None)¶
Return the
DiGraph
associated toself
.INPUT:
subset
– (optional) a subset of vertices for which the digraph should be constructedindex_set
– (optional) the index set to draw arrows
EXAMPLES:
sage: C = Crystals().example(5) sage: C.digraph() Digraph on 6 vertices
The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, and green for edge 3:
sage: C = Crystals().example(3) sage: G = C.digraph() sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
One may also overwrite the colors:
sage: C = Crystals().example(3) sage: G = C.digraph() sage: G.set_latex_options(color_by_label = {1:"red", 2:"purple", 3:"blue"}) sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
Or one may add colors to yet unspecified edges:
sage: C = Crystals().example(4) sage: G = C.digraph() sage: C.cartan_type()._index_set_coloring[4]="purple" sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
Here is an example of how to take the top part up to a given depth of an infinite dimensional crystal:
sage: C = CartanType(['C',2,1]) sage: La = C.root_system().weight_lattice().fundamental_weights() sage: T = crystals.HighestWeight(La[0]) sage: S = T.subcrystal(max_depth=3) sage: G = T.digraph(subset=S); G Digraph on 5 vertices sage: sorted(G.vertices(), key=str) [(-Lambda[0] + 2*Lambda[1] - delta,), (1/2*Lambda[0] + Lambda[1] - Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[1] - 1/2*delta), (1/2*Lambda[0] - Lambda[1] + Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[1] - 1/2*delta), (Lambda[0] - 2*Lambda[1] + 2*Lambda[2] - delta,), (Lambda[0],)]
Here is a way to construct a picture of a Demazure crystal using the
subset
option:sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: t = B.highest_weight_vector() sage: D = B.demazure_subcrystal(t, [2,1]) sage: list(D) [[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]], [[1, 3], [2]], [[1, 3], [3]]] sage: view(D) # optional - dot2tex graphviz, not tested (opens external window)
We can also choose to display particular arrows using the
index_set
option:sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1) sage: G = C.digraph(index_set=[1,3]) sage: len(G.edges()) 20 sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
Todo
Add more tests.
- direct_sum(X)¶
Return the direct sum of
self
withX
.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: C = crystals.Letters(['A',2]) sage: B.direct_sum(C) Direct sum of the crystals Family (The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]], The crystal of letters for type ['A', 2])
As a shorthand, we can use
+
:sage: B + C Direct sum of the crystals Family (The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]], The crystal of letters for type ['A', 2])
- dot_tex()¶
Return a dot_tex string representation of
self
.EXAMPLES:
sage: C = crystals.Letters(['A',2]) sage: C.dot_tex() 'digraph G { \n node [ shape=plaintext ];\n N_0 [ label = " ", texlbl = "$1$" ];\n N_1 [ label = " ", texlbl = "$2$" ];\n N_2 [ label = " ", texlbl = "$3$" ];\n N_0 -> N_1 [ label = " ", texlbl = "1" ];\n N_1 -> N_2 [ label = " ", texlbl = "2" ];\n}'
- index_set()¶
Returns the index set of the Dynkin diagram underlying the crystal
EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: C.index_set() (1, 2, 3, 4, 5)
- is_connected()¶
Return
True
ifself
is a connected crystal.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(B,C) sage: B.is_connected() True sage: T.is_connected() False
- latex(**options)¶
Returns the crystal graph as a latex string. This can be exported to a file with self.latex_file(‘filename’).
EXAMPLES:
sage: T = crystals.Tableaux(['A',2],shape=[1]) sage: T._latex_() '...tikzpicture...' sage: view(T) # optional - dot2tex graphviz, not tested (opens external window)
One can for example also color the edges using the following options:
sage: T = crystals.Tableaux(['A',2],shape=[1]) sage: T._latex_(color_by_label={0:"black", 1:"red", 2:"blue"}) '...tikzpicture...'
- latex_file(filename)¶
Export a file, suitable for pdflatex, to ‘filename’.
This requires a proper installation of
dot2tex
in sage-python. For more information see the documentation forself.latex()
.EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: fn = tmp_filename(ext='.tex') sage: C.latex_file(fn)
- metapost(filename, thicklines=False, labels=True, scaling_factor=1.0, tallness=1.0)¶
Use C.metapost(“filename.mp”,[options]), where options can be:
thicklines = True (for thicker edges) labels = False (to suppress labeling of the vertices) scaling_factor=value, where value is a floating point number, 1.0 by default. Increasing or decreasing the scaling factor changes the size of the image. tallness=1.0. Increasing makes the image taller without increasing the width.
Root operators e(1) or f(1) move along red lines, e(2) or f(2) along green. The highest weight is in the lower left. Vertices with the same weight are kept close together. The concise labels on the nodes are strings introduced by Berenstein and Zelevinsky and Littelmann; see Littelmann’s paper Cones, Crystals, Patterns, sections 5 and 6.
For Cartan types B2 or C2, the pattern has the form
a2 a3 a4 a1
where c*a2 = a3 = 2*a4 =0 and a1=0, with c=2 for B2, c=1 for C2. Applying e(2) a1 times, e(1) a2 times, e(2) a3 times, e(1) a4 times returns to the highest weight. (Observe that Littelmann writes the roots in opposite of the usual order, so our e(1) is his e(2) for these Cartan types.) For type A2, the pattern has the form
a3 a2 a1
where applying e(1) a1 times, e(2) a2 times then e(3) a1 times returns to the highest weight. These data determine the vertex and may be translated into a Gelfand-Tsetlin pattern or tableau.
EXAMPLES:
sage: C = crystals.Letters(['A', 2]) sage: C.metapost(tmp_filename())
sage: C = crystals.Letters(['A', 5]) sage: C.metapost(tmp_filename()) Traceback (most recent call last): ... NotImplementedError
- number_of_connected_components()¶
Return the number of connected components of
self
.EXAMPLES:
sage: B = crystals.Tableaux(['A',2], shape=[2,1]) sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(B,C) sage: T.number_of_connected_components() 3
- plot(**options)¶
Return the plot of
self
as a directed graph.EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: print(C.plot()) Graphics object consisting of 17 graphics primitives
- plot3d(**options)¶
Return the 3-dimensional plot of
self
as a directed graph.EXAMPLES:
sage: C = crystals.KirillovReshetikhin(['A',3,1],2,1) sage: print(C.plot3d()) Graphics3d Object
- subcrystal(index_set=None, generators=None, max_depth=inf, direction='both', contained=None, virtualization=None, scaling_factors=None, cartan_type=None, category=None)¶
Construct the subcrystal from
generators
using \(e_i\) and/or \(f_i\) for all \(i\) inindex_set
.INPUT:
index_set
– (default:None
) the index set; ifNone
then use the index set of the crystalgenerators
– (default:None
) the list of generators; ifNone
then use the module generators of the crystalmax_depth
– (default: infinity) the maximum depth to builddirection
– (default:'both'
) the direction to build the subcrystal; it can be one of the following:'both'
- using both \(e_i\) and \(f_i\)'upper'
- using \(e_i\)'lower'
- using \(f_i\)
contained
– (optional) a set or function defining the containment in the subcrystalvirtualization
,scaling_factors
– (optional) dictionaries whose key \(i\) corresponds to the sets \(\sigma_i\) and \(\gamma_i\) respectively used to define virtual crystals; seeVirtualCrystal
cartan_type
– (optional) specify the Cartan type of the subcrystalcategory
– (optional) specify the category of the subcrystal
EXAMPLES:
sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2) sage: S = list(C.subcrystal(index_set=[1,2])); S [[[1, 1]], [[1, 2]], [[2, 2]], [[1, 3]], [[2, 3]], [[3, 3]]] sage: C.cardinality() 10 sage: len(S) 6 sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)])) [[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]] sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], max_depth=1)) [[[1, 4]], [[2, 4]], [[1, 3]]] sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='upper')) [[[1, 4]], [[1, 3]]] sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='lower')) [[[1, 4]], [[2, 4]]] sage: G = C.subcrystal(index_set=[1,2,3]).digraph() sage: GA = crystals.Tableaux('A3', shape=[2]).digraph() sage: G.is_isomorphic(GA, edge_labels=True) True
We construct the subcrystal which contains the necessary data to construct the corresponding dual equivalence graph:
sage: C = crystals.Tableaux(['A',5], shape=[3,3]) sage: is_wt0 = lambda x: all(x.epsilon(i) == x.phi(i) for i in x.parent().index_set()) sage: def check(x): ....: if is_wt0(x): ....: return True ....: for i in x.parent().index_set()[:-1]: ....: L = [x.e(i), x.e_string([i,i+1]), x.f(i), x.f_string([i,i+1])] ....: if any(y is not None and is_wt0(y) for y in L): ....: return True ....: return False sage: wt0 = [x for x in C if is_wt0(x)] sage: S = C.subcrystal(contained=check, generators=wt0) sage: S.module_generators[0] [[1, 3, 5], [2, 4, 6]] sage: S.module_generators[0].e(2).e(3).f(2).f(3) [[1, 2, 5], [3, 4, 6]]
An example of a type \(B_2\) virtual crystal inside of a type \(A_3\) ambient crystal:
sage: A = crystals.Tableaux(['A',3], shape=[2,1,1]) sage: S = A.subcrystal(virtualization={1:[1,3], 2:[2]}, ....: scaling_factors={1:1,2:1}, cartan_type=['B',2]) sage: B = crystals.Tableaux(['B',2], shape=[1]) sage: S.digraph().is_isomorphic(B.digraph(), edge_labels=True) True
- tensor(*crystals, **options)¶
Return the tensor product of
self
with the crystalsB
.EXAMPLES:
sage: C = crystals.Letters(['A', 3]) sage: B = crystals.infinity.Tableaux(['A', 3]) sage: T = C.tensor(C, B); T Full tensor product of the crystals [The crystal of letters for type ['A', 3], The crystal of letters for type ['A', 3], The infinity crystal of tableaux of type ['A', 3]] sage: tensor([C, C, B]) is T True sage: C = crystals.Letters(['A',2]) sage: T = C.tensor(C, C, generators=[[C(2),C(1),C(1)],[C(1),C(2),C(1)]]); T The tensor product of the crystals [The crystal of letters for type ['A', 2], The crystal of letters for type ['A', 2], The crystal of letters for type ['A', 2]] sage: T.module_generators ([2, 1, 1], [1, 2, 1])
- weight_lattice_realization()¶
Return the weight lattice realization used to express weights in
self
.This default implementation uses the ambient space of the root system for (non relabelled) finite types and the weight lattice otherwise. This is a legacy from when ambient spaces were partially implemented, and may be changed in the future.
For affine types, this returns the extended weight lattice by default.
EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: C.weight_lattice_realization() Ambient space of the Root system of type ['A', 5] sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: K.weight_lattice_realization() Weight lattice of the Root system of type ['A', 2, 1]
- class SubcategoryMethods¶
Bases:
object
Methods for all subcategories.
- TensorProducts()¶
Return the full subcategory of objects of
self
constructed as tensor products.See also
RegressiveCovariantFunctorialConstruction
.
EXAMPLES:
sage: HighestWeightCrystals().TensorProducts() Category of tensor products of highest weight crystals
- class TensorProducts(category, *args)¶
Bases:
sage.categories.tensor.TensorProductsCategory
The category of crystals constructed by tensor product of crystals.
- extra_super_categories()¶
EXAMPLES:
sage: Crystals().TensorProducts().extra_super_categories() [Category of crystals]
- example(choice='highwt', **kwds)¶
Returns an example of a crystal, as per
Category.example()
.INPUT:
choice
– str [default: ‘highwt’]. Can be either ‘highwt’ for the highest weight crystal of type A, or ‘naive’ for an example of a broken crystal.**kwds
– keyword arguments passed onto the constructor for the chosen crystal.
EXAMPLES:
sage: Crystals().example(choice='highwt', n=5) Highest weight crystal of type A_5 of highest weight omega_1 sage: Crystals().example(choice='naive') A broken crystal, defined by digraph, of dimension five.
- super_categories()¶
EXAMPLES:
sage: Crystals().super_categories() [Category of enumerated sets]