Examples of finite monoids¶
- sage.categories.examples.finite_monoids.Example¶
alias of
sage.categories.examples.finite_monoids.IntegerModMonoid
- class sage.categories.examples.finite_monoids.IntegerModMonoid(n=12)¶
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.structure.parent.Parent
An example of a finite monoid: the integers mod \(n\)
This class illustrates a minimal implementation of a finite monoid.
EXAMPLES:
sage: S = FiniteMonoids().example(); S An example of a finite multiplicative monoid: the integers modulo 12 sage: S.category() Category of finitely generated finite enumerated monoids
We conclude by running systematic tests on this monoid:
sage: TestSuite(S).run(verbose = True) running ._test_an_element() . . . pass running ._test_associativity() . . . pass running ._test_cardinality() . . . pass running ._test_category() . . . pass running ._test_construction() . . . pass running ._test_elements() . . . Running the test suite of self.an_element() running ._test_category() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass pass running ._test_elements_eq_reflexive() . . . pass running ._test_elements_eq_symmetric() . . . pass running ._test_elements_eq_transitive() . . . pass running ._test_elements_neq() . . . pass running ._test_enumerated_set_contains() . . . pass running ._test_enumerated_set_iter_cardinality() . . . pass running ._test_enumerated_set_iter_list() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_one() . . . pass running ._test_pickling() . . . pass running ._test_prod() . . . pass running ._test_some_elements() . . . pass
- class Element¶
Bases:
sage.structure.element_wrapper.ElementWrapper
- wrapped_class¶
alias of
sage.rings.integer.Integer
- an_element()¶
Returns an element of the monoid, as per
Sets.ParentMethods.an_element()
.EXAMPLES:
sage: M = FiniteMonoids().example() sage: M.an_element() 6
- one()¶
Return the one of the monoid, as per
Monoids.ParentMethods.one()
.EXAMPLES:
sage: M = FiniteMonoids().example() sage: M.one() 1
- product(x, y)¶
Return the product of two elements \(x\) and \(y\) of the monoid, as per
Semigroups.ParentMethods.product()
.EXAMPLES:
sage: M = FiniteMonoids().example() sage: M.product(M(3), M(5)) 3
- semigroup_generators()¶
Returns a set of generators for
self
, as perSemigroups.ParentMethods.semigroup_generators()
. Currently this returns all integers mod \(n\), which is of course far from optimal!EXAMPLES:
sage: M = FiniteMonoids().example() sage: M.semigroup_generators() Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)