Generalized Coxeter Groups¶
- class sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups(s=None)¶
Bases:
sage.categories.category_singleton.Category_singleton
The category of generalized Coxeter groups.
A generalized Coxeter group is a group with a presentation of the following form:
\[\langle s_i \mid s_i^{p_i}, s_i s_j \cdots = s_j s_i \cdots \rangle,\]where \(p_i > 1\), \(i \in I\), and the factors in the braid relation occur \(m_{ij} = m_{ji}\) times for all \(i \neq j \in I\).
EXAMPLES:
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups sage: C = GeneralizedCoxeterGroups(); C Category of generalized coxeter groups
- class Finite(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton
The category of finite generalized Coxeter groups.
- extra_super_categories()¶
Implement that a finite generalized Coxeter group is a well-generated complex reflection group.
EXAMPLES:
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: Cat = GeneralizedCoxeterGroups().Finite() sage: Cat.extra_super_categories() [Category of well generated finite complex reflection groups] sage: Cat.is_subcategory(ComplexReflectionGroups().Finite().WellGenerated()) True
- additional_structure()¶
Return
None
.Indeed, all the structure generalized Coxeter groups have in addition to groups (simple reflections, …) is already defined in the super category.
See also
EXAMPLES:
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups sage: GeneralizedCoxeterGroups().additional_structure()
- super_categories()¶
EXAMPLES:
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups sage: GeneralizedCoxeterGroups().super_categories() [Category of complex reflection or generalized coxeter groups]