Graded Lie Algebras¶
AUTHORS:
Eero Hakavuori (2018-08-16): initial version
- class sage.categories.graded_lie_algebras.GradedLieAlgebras(base_category)¶
Bases:
sage.categories.graded_modules.GradedModulesCategory
Category of graded Lie algebras.
- class Stratified(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
Category of stratified Lie algebras.
A graded Lie algebra \(L = \bigoplus_{k=1}^M L_k\) (where possibly \(M = \infty\)) is called stratified if it is generated by \(L_1\); in other words, we have \(L_{k+1} = [L_1, L_k]\).
- class FiniteDimensional(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
Category of finite dimensional stratified Lie algebras.
EXAMPLES:
sage: LieAlgebras(QQ).Graded().Stratified().FiniteDimensional() Category of finite dimensional stratified Lie algebras over Rational Field
- extra_super_categories()¶
Implements the fact that a finite dimensional stratified Lie algebra is nilpotent.
EXAMPLES:
sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional() sage: C.extra_super_categories() [Category of nilpotent Lie algebras over Rational Field] sage: C is C.Nilpotent() True sage: C.is_subcategory(LieAlgebras(QQ).Nilpotent()) True
- class SubcategoryMethods¶
Bases:
object
- Stratified()¶
Return the full subcategory of stratified objects of
self
.A Lie algebra is stratified if it is graded and generated as a Lie algebra by its component of degree one.
EXAMPLES:
sage: LieAlgebras(QQ).Graded().Stratified() Category of stratified Lie algebras over Rational Field