Supercommutative Algebras

class sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of supercommutative algebras.

An R-supercommutative algebra is an R-super algebra A=A0A1 endowed with an R-super algebra structure satisfying:

x0x0=x0x0,x1x1=x1x1,x0x1=x1x0,

for all x0,x0A0 and x1,x1A1.

EXAMPLES:

sage: Algebras(ZZ).Supercommutative()
Category of supercommutative algebras over Integer Ring
class SignedTensorProducts(category, *args)

Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

extra_super_categories()

Return the extra super categories of self.

A signed tensor product of supercommutative algebras is a supercommutative algebra.

EXAMPLES:

sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts()
sage: C.extra_super_categories()
[Category of supercommutative algebras over Integer Ring]
class WithBasis(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods

Bases: object