Supercommutative Algebras¶
- class sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
The category of supercommutative algebras.
An R-supercommutative algebra is an R-super algebra A=A0⊕A1 endowed with an R-super algebra structure satisfying:
x0x′0=x′0x0,x1x′1=−x′1x1,x0x1=x1x0,for all x0,x′0∈A0 and x1,x′1∈A1.
EXAMPLES:
sage: Algebras(ZZ).Supercommutative() Category of supercommutative algebras over Integer Ring
- class SignedTensorProducts(category, *args)¶
Bases:
sage.categories.signed_tensor.SignedTensorProductsCategory
- extra_super_categories()¶
Return the extra super categories of
self
.A signed tensor product of supercommutative algebras is a supercommutative algebra.
EXAMPLES:
sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts() sage: C.extra_super_categories() [Category of supercommutative algebras over Integer Ring]
- class WithBasis(base_category)¶
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
- class ParentMethods¶
Bases:
object