Coxeter Groups¶
- sage.combinat.root_system.coxeter_group.CoxeterGroup(data, implementation='reflection', base_ring=None, index_set=None)¶
Return an implementation of the Coxeter group given by
data
.INPUT:
data
– a Cartan type (or coercible into; seeCartanType
) or a Coxeter matrix or graphimplementation
– (default:'reflection'
) can be one of the following:'permutation'
- as a permutation representation'matrix'
- as a Weyl group (as a matrix group acting on the root space); if this is not implemented, this uses the “reflection” implementation'coxeter3'
- using the coxeter3 package'reflection'
- as elements in the reflection representation; seeCoxeterMatrixGroup
base_ring
– (optional) the base ring for the'reflection'
implementationindex_set
– (optional) the index set for the'reflection'
implementation
EXAMPLES:
Now assume that
data
represents a Cartan type. Ifimplementation
is not specified, the reflection representation is returned:sage: W = CoxeterGroup(["A",2]) sage: W Finite Coxeter group over Integer Ring with Coxeter matrix: [1 3] [3 1] sage: W = CoxeterGroup(["A",3,1]); W Coxeter group over Integer Ring with Coxeter matrix: [1 3 2 3] [3 1 3 2] [2 3 1 3] [3 2 3 1] sage: W = CoxeterGroup(['H',3]); W Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? with Coxeter matrix: [1 3 2] [3 1 5] [2 5 1]
We now use the
implementation
option:sage: W = CoxeterGroup(["A",2], implementation = "permutation") # optional - gap3 sage: W # optional - gap3 Permutation Group with generators [(1,4)(2,3)(5,6), (1,3)(2,5)(4,6)] sage: W.category() # optional - gap3 Join of Category of finite enumerated permutation groups and Category of finite weyl groups and Category of well generated finite irreducible complex reflection groups sage: W = CoxeterGroup(["A",2], implementation="matrix") sage: W Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space) sage: W = CoxeterGroup(["H",3], implementation="matrix") sage: W Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? with Coxeter matrix: [1 3 2] [3 1 5] [2 5 1] sage: W = CoxeterGroup(["H",3], implementation="reflection") sage: W Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? with Coxeter matrix: [1 3 2] [3 1 5] [2 5 1] sage: W = CoxeterGroup(["A",4,1], implementation="permutation") Traceback (most recent call last): ... ValueError: the type must be finite sage: W = CoxeterGroup(["A",4], implementation="chevie"); W # optional - gap3 Irreducible real reflection group of rank 4 and type A4
We use the different options for the “reflection” implementation:
sage: W = CoxeterGroup(["H",3], implementation="reflection", base_ring=RR) sage: W Finite Coxeter group over Real Field with 53 bits of precision with Coxeter matrix: [1 3 2] [3 1 5] [2 5 1] sage: W = CoxeterGroup([[1,10],[10,1]], implementation="reflection", index_set=['a','b'], base_ring=SR) sage: W Finite Coxeter group over Symbolic Ring with Coxeter matrix: [ 1 10] [10 1]