Functorial composition species¶
- class sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies(F, G, min=None, max=None, weight=None)¶
Bases:
sage.combinat.species.species.GenericCombinatorialSpecies
Returns the functorial composition of two species.
EXAMPLES:
sage: E = species.SetSpecies() sage: E2 = species.SetSpecies(size=2) sage: WP = species.SubsetSpecies() sage: P2 = E2*E sage: G = WP.functorial_composition(P2) sage: G.isotype_generating_series().coefficients(5) [1, 1, 2, 4, 11] sage: G = species.SimpleGraphSpecies() sage: c = G.generating_series().coefficients(2) sage: type(G) <class 'sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies'> sage: G == loads(dumps(G)) True sage: G._check() #False due to isomorphism types not being implemented False
- weight_ring()¶
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you multiply (and add) elements of the weight rings for each of the operands.
EXAMPLES:
sage: G = species.SimpleGraphSpecies() sage: G.weight_ring() Rational Field
- sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies_class¶
alias of
sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies
- class sage.combinat.species.functorial_composition_species.FunctorialCompositionStructure(parent, labels, list)¶
Bases:
sage.combinat.species.structure.GenericSpeciesStructure