Linear Expressions¶
A linear expression is just a linear polynomial in some (fixed) variables (allowing a nonzero constant term). This class only implements linear expressions for others to use.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ); L
Module of linear expressions in variables x, y, z over Rational Field
sage: x + 2*y + 3*z + 4
x + 2*y + 3*z + 4
sage: L(4)
0*x + 0*y + 0*z + 4
You can also pass coefficients and a constant term to construct linear expressions:
sage: L([1, 2, 3], 4)
x + 2*y + 3*z + 4
sage: L([(1, 2, 3), 4])
x + 2*y + 3*z + 4
sage: L([4, 1, 2, 3]) # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4
The linear expressions are a module over the base ring, so you can add them and multiply them with scalars:
sage: m = x + 2*y + 3*z + 4
sage: 2*m
2*x + 4*y + 6*z + 8
sage: m+m
2*x + 4*y + 6*z + 8
sage: m-m
0*x + 0*y + 0*z + 0
- class sage.geometry.linear_expression.LinearExpression(parent, coefficients, constant, check=True)¶
Bases:
sage.structure.element.ModuleElement
A linear expression.
A linear expression is just a linear polynomial in some (fixed) variables.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: m = L([1, 2, 3], 4); m x + 2*y + 3*z + 4 sage: m2 = L([(1, 2, 3), 4]); m2 x + 2*y + 3*z + 4 sage: m3 = L([4, 1, 2, 3]); m3 # note: constant is first in single-tuple notation x + 2*y + 3*z + 4 sage: m == m2 True sage: m2 == m3 True sage: L.zero() 0*x + 0*y + 0*z + 0 sage: a = L([12, 2/3, -1], -2) sage: a - m 11*x - 4/3*y - 4*z - 6 sage: LZ.<x,y,z> = LinearExpressionModule(ZZ) sage: a - LZ([2, -1, 3], 1) 10*x + 5/3*y - 4*z - 3
- A()¶
Return the coefficient vector.
OUTPUT:
The coefficient vector of the linear expression.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
- b()¶
Return the constant term.
OUTPUT:
The constant term of the linear expression.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
- change_ring(base_ring)¶
Change the base ring of this linear expression.
INPUT:
base_ring
– a ring; the new base ring
OUTPUT:
A new linear expression over the new base ring.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: a = x + 2*y + 3*z + 4; a x + 2*y + 3*z + 4 sage: a.change_ring(RDF) 1.0*x + 2.0*y + 3.0*z + 4.0
- coefficients()¶
Return all coefficients.
OUTPUT:
The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.coefficients() [4, 1, 2, 3]
- constant_term()¶
Return the constant term.
OUTPUT:
The constant term of the linear expression.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.A() (1, 2, 3) sage: linear.b() 4
- dense_coefficient_list()¶
Return all coefficients.
OUTPUT:
The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4); linear x + 2*y + 3*z + 4 sage: linear.coefficients() [4, 1, 2, 3]
- evaluate(point)¶
Evaluate the linear expression.
INPUT:
point
– list/tuple/iterable of coordinates; the coordinates of a point
OUTPUT:
The linear expression \(Ax + b\) evaluated at the point \(x\).
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y> = LinearExpressionModule(QQ) sage: ex = 2*x + 3* y + 4 sage: ex.evaluate([1,1]) 9 sage: ex([1,1]) # syntactic sugar 9 sage: ex([pi, e]) 2*pi + 3*e + 4
- monomial_coefficients(copy=True)¶
Return a dictionary whose keys are indices of basis elements in the support of
self
and whose values are the corresponding coefficients.INPUT:
copy
– ignored
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: linear = L([1, 2, 3], 4) sage: sorted(linear.monomial_coefficients().items(), key=lambda x: str(x[0])) [(0, 1), (1, 2), (2, 3), ('b', 4)]
- class sage.geometry.linear_expression.LinearExpressionModule(base_ring, names=())¶
Bases:
sage.structure.parent.Parent
,sage.structure.unique_representation.UniqueRepresentation
The module of linear expressions.
This is the module of linear polynomials which is the parent for linear expressions.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L Module of linear expressions in variables x, y, z over Rational Field sage: L.an_element() x + 0*y + 0*z + 0
- Element¶
alias of
LinearExpression
- ambient_module()¶
Return the ambient module.
See also
OUTPUT:
The domain of the linear expressions as a free module over the base ring.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ambient_module() Vector space of dimension 3 over Rational Field sage: M = LinearExpressionModule(ZZ, ('r', 's')) sage: M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: M.ambient_vector_space() Vector space of dimension 2 over Rational Field
- ambient_vector_space()¶
Return the ambient vector space.
See also
OUTPUT:
The vector space (over the fraction field of the base ring) where the linear expressions live.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ambient_vector_space() Vector space of dimension 3 over Rational Field sage: M = LinearExpressionModule(ZZ, ('r', 's')) sage: M.ambient_module() Ambient free module of rank 2 over the principal ideal domain Integer Ring sage: M.ambient_vector_space() Vector space of dimension 2 over Rational Field
- basis()¶
Return a basis of
self
.EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: list(L.basis()) [x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0, 0*x + 0*y + 0*z + 1]
- change_ring(base_ring)¶
Return a new module with a changed base ring.
INPUT:
base_ring
– a ring; the new base ring
OUTPUT:
A new linear expression over the new base ring.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: M.<y> = LinearExpressionModule(ZZ) sage: L = M.change_ring(QQ); L Module of linear expressions in variable y over Rational Field
- gen(i)¶
Return the \(i\)-th generator.
INPUT:
i
– integer
OUTPUT:
A linear expression.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.gen(0) x + 0*y + 0*z + 0
- gens()¶
Return the generators of
self
.OUTPUT:
A tuple of linear expressions, one for each linear variable.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.gens() (x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)
- ngens()¶
Return the number of linear variables.
OUTPUT:
An integer.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z')) sage: L.ngens() 3
- random_element()¶
Return a random element.
EXAMPLES:
sage: from sage.geometry.linear_expression import LinearExpressionModule sage: L.<x,y,z> = LinearExpressionModule(QQ) sage: L.random_element() in L True