Fast dense graphs¶
For an overview of graph data structures in sage, see
overview
.
Usage Introduction¶
sage: from sage.graphs.base.dense_graph import DenseGraph
Dense graphs are initialized as follows:
sage: D = DenseGraph(nverts=10, extra_vertices=10)
This example initializes a dense graph with room for twenty vertices, the first
ten of which are in the graph. In general, the first nverts
are “active.”
For example, see that 9 is already in the graph:
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: D.add_vertex(9)
9
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
But 10 is not, until we add it:
sage: D.add_vertex(10)
10
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
You can begin working right away as follows:
sage: D.add_arc(0, 1)
sage: D.add_arc(1, 2)
sage: D.add_arc(1, 0)
sage: D.has_arc(7, 3)
False
sage: D.has_arc(0, 1)
True
sage: D.in_neighbors(1)
[0]
sage: D.out_neighbors(1)
[0, 2]
sage: D.del_all_arcs(0, 1)
sage: D.has_arc(0, 1)
False
sage: D.has_arc(1, 2)
True
sage: D.del_vertex(7)
sage: D.has_arc(7, 3)
False
Dense graphs do not support multiple or labeled edges.
sage: T = DenseGraph(nverts=3, extra_vertices=2)
sage: T.add_arc(0, 1)
sage: T.add_arc(1, 2)
sage: T.add_arc(2, 0)
sage: T.has_arc(0, 1)
True
sage: for _ in range(10): D.add_arc(5, 4)
sage: D.has_arc(5,4 )
True
Dense graphs are by their nature directed. As of this writing, you need to do operations in pairs to treat the undirected case (or use a backend or a Sage graph):
sage: T.has_arc(1, 0)
False
The curious developer is encouraged to check out the unsafe
functions,
which do not check input but which run in pure C.
Underlying Data Structure¶
The class DenseGraph
contains the following variables which are inherited
from CGraph
(for explanation, refer to the documentation there):
cdef int num_verts
cdef int num_arcs
cdef int *in_degrees
cdef int *out_degrees
cdef bitset_t active_vertices
It also contains the following variables:
cdef binary_matrix_t edges
- class sage.graphs.base.dense_graph.DenseGraph¶
Bases:
sage.graphs.base.c_graph.CGraph
Compiled dense graphs.
sage: from sage.graphs.base.dense_graph import DenseGraph
Dense graphs are initialized as follows:
sage: D = DenseGraph(nverts=10, extra_vertices=10)
INPUT:
nverts
– non-negative integer; the number of verticesextra_vertices
– non-negative integer (default: 10); how many extra vertices to allocateverts
– list (default:None
); optional list of vertices to addarcs
– list (default:None
); optional list of arcs to adddirected
– boolean (default:None
); whether the graph is directed
The first
nverts
are created as vertices of the graph, and the nextextra_vertices
can be freely added without reallocation. See top level documentation for more details. The inputverts
andarcs
are mainly for use in pickling.- complement()¶
Replace the graph with its complement
Note
Assumes that the graph has no loop.
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: G = DenseGraph(5) sage: G.add_arc(0, 1) sage: G.has_arc(0, 1) True sage: G.complement() sage: G.has_arc(0, 1) False
- realloc(total_verts)¶
Reallocate the number of vertices to use, without actually adding any.
INPUT:
total
– integer; the total size to make the array
Returns -1 and fails if reallocation would destroy any active vertices.
EXAMPLES:
sage: from sage.graphs.base.dense_graph import DenseGraph sage: D = DenseGraph(nverts=4, extra_vertices=4) sage: D.current_allocation() 8 sage: D.add_vertex(6) 6 sage: D.current_allocation() 8 sage: D.add_vertex(10) 10 sage: D.current_allocation() 16 sage: D.add_vertex(40) Traceback (most recent call last): ... RuntimeError: requested vertex is past twice the allocated range: use realloc sage: D.realloc(50) sage: D.add_vertex(40) 40 sage: D.current_allocation() 50 sage: D.realloc(30) -1 sage: D.current_allocation() 50 sage: D.del_vertex(40) sage: D.realloc(30) sage: D.current_allocation() 30
- class sage.graphs.base.dense_graph.DenseGraphBackend¶
Bases:
sage.graphs.base.c_graph.CGraphBackend
Backend for Sage graphs using DenseGraphs.
sage: from sage.graphs.base.dense_graph import DenseGraphBackend
This class is only intended for use by the Sage Graph and DiGraph class. If you are interested in using a DenseGraph, you probably want to do something like the following example, which creates a Sage Graph instance which wraps a
DenseGraph
object:sage: G = Graph(30, sparse=False) sage: G.add_edges([(0, 1), (0, 3), (4, 5), (9, 23)]) sage: G.edges(labels=False) [(0, 1), (0, 3), (4, 5), (9, 23)]
Note that Sage graphs using the backend are more flexible than DenseGraphs themselves. This is because DenseGraphs (by design) do not deal with Python objects:
sage: G.add_vertex((0, 1, 2)) sage: sorted(list(G), ....: key=lambda x: (isinstance(x, tuple), x)) [0, ... 29, (0, 1, 2)] sage: from sage.graphs.base.dense_graph import DenseGraph sage: DG = DenseGraph(30) sage: DG.add_vertex((0, 1, 2)) Traceback (most recent call last): ... TypeError: an integer is required
- add_edges(edges, directed, remove_loops=False)¶
Add edges from a list.
INPUT:
edges
– an iterable of edges to be added; each edge can either beof the form
(u, v)
or(u, v, l)
directed
– ifFalse
, adds(v, u)
as well as(u, v)
remove_loops
– ifTrue
, remove loops
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0, 1), (2, 3), (4, 5), (5, 6)], False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None), (2, 3, None), (4, 5, None), (5, 6, None)]
- get_edge_label(u, v)¶
Return the edge label for
(u, v)
.Always
None
, since dense graphs do not support edge labels.INPUT:
u, v
– the vertices of the edge
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0, 1), (2, 3, 7), (4, 5), (5, 6)], False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None), (2, 3, None), (4, 5, None), (5, 6, None)] sage: D.del_edge(0, 1, None, True) sage: list(D.iterator_out_edges(range(9), True)) [(1, 0, None), (2, 3, None), (3, 2, None), (4, 5, None), (5, 4, None), (5, 6, None), (6, 5, None)] sage: D.get_edge_label(2, 3) sage: D.get_edge_label(2, 4) Traceback (most recent call last): ... LookupError: (2, 4) is not an edge of the graph
- has_edge(u, v, l)¶
Check whether this graph has edge
(u, v)
.Note
The input
l
is for consistency with other backends.INPUT:
u, v
– the vertices of the edgel
– the edge label (ignored)
EXAMPLES:
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: D.add_edges([(0, 1), (2, 3), (4, 5), (5, 6)], False) sage: D.has_edge(0, 1, None) True
- multiple_edges(new)¶
Get/set whether or not
self
allows multiple edges.INPUT:
new
– boolean (to set) orNone
(to get)
EXAMPLES:
sage: import sage.graphs.base.dense_graph sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.multiple_edges(True) Traceback (most recent call last): ... NotImplementedError: dense graphs do not support multiple edges sage: G.multiple_edges(None) False
- set_edge_label(u, v, l, directed)¶
Label the edge
(u, v)
byl
.INPUT:
u, v
– the vertices of the edgel
– the edge labeldirected
– ifFalse
, also set(v, u)
with labell
EXAMPLES:
sage: import sage.graphs.base.dense_graph sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9) sage: G.set_edge_label(1, 2, 'a', True) Traceback (most recent call last): ... NotImplementedError: dense graphs do not support edge labels