Matrices over an arbitrary ring

AUTHORS:

  • William Stein

  • Martin Albrecht: conversion to Pyrex

  • Jaap Spies: various functions

  • Gary Zablackis: fixed a sign bug in generic determinant.

  • William Stein and Robert Bradshaw - complete restructuring.

  • Rob Beezer - refactor kernel functions.

Elements of matrix spaces are of class Matrix (or a class derived from Matrix). They can be either sparse or dense, and can be defined over any base ring.

EXAMPLES:

We create the 2×3 matrix

(123456)

as an element of a matrix space over Q:

sage: M = MatrixSpace(QQ,2,3)
sage: A = M([1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.parent()
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

Alternatively, we could create A more directly as follows (which would completely avoid having to create the matrix space):

sage: A = matrix(QQ, 2, [1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]

We next change the top-right entry of A. Note that matrix indexing is 0-based in Sage, so the top right entry is (0,2), which should be thought of as “row number 0, column number 2”.

sage: A[0,2] = 389
sage: A
[  1   2 389]
[  4   5   6]

Also notice how matrices print. All columns have the same width and entries in a given column are right justified. Next we compute the reduced row echelon form of A.

sage: A.rref()
[      1       0 -1933/3]
[      0       1  1550/3]

Indexing

Sage has quite flexible ways of extracting elements or submatrices from a matrix:

sage: m=[(1, -2, -1, -1,9), (1, 8, 6, 2,2), (1, 1, -1, 1,4), (-1, 2, -2, -1,4)] ; M = matrix(m)
sage: M
[ 1 -2 -1 -1  9]
[ 1  8  6  2  2]
[ 1  1 -1  1  4]
[-1  2 -2 -1  4]

Get the 2 x 2 submatrix of M, starting at row index and column index 1:

sage: M[1:3,1:3]
[ 8  6]
[ 1 -1]

Get the 2 x 3 submatrix of M starting at row index and column index 1:

sage: M[1:3,[1..3]]
[ 8  6  2]
[ 1 -1  1]

Get the second column of M:

sage: M[:,1]
[-2]
[ 8]
[ 1]
[ 2]

Get the first row of M:

sage: M[0,:]
[ 1 -2 -1 -1  9]

Get the last row of M (negative numbers count from the end):

sage: M[-1,:]
[-1  2 -2 -1  4]

More examples:

sage: M[range(2),:]
[ 1 -2 -1 -1  9]
[ 1  8  6  2  2]
sage: M[range(2),4]
[9]
[2]
sage: M[range(3),range(5)]
[ 1 -2 -1 -1  9]
[ 1  8  6  2  2]
[ 1  1 -1  1  4]

sage: M[3,range(5)]
[-1  2 -2 -1  4]
sage: M[3,:]
[-1  2 -2 -1  4]
sage: M[3,4]
4

sage: M[-1,:]
[-1  2 -2 -1  4]

sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A
[ 3  2 -5  0]
[ 1 -1  1 -4]
[ 1  0  1 -3]

A series of three numbers, separated by colons, like n:m:s, means numbers from n up to (but not including) m, in steps of s. So 0:5:2 means the sequence [0,2,4]:

sage: A[:,0:4:2]
[ 3 -5]
[ 1  1]
[ 1  1]

sage: A[1:,0:4:2]
[1 1]
[1 1]

sage: A[2::-1,:]
[ 1  0  1 -3]
[ 1 -1  1 -4]
[ 3  2 -5  0]

sage: A[1:,3::-1]
[-4  1 -1  1]
[-3  1  0  1]

sage: A[1:,3::-2]
[-4 -1]
[-3  0]

sage: A[2::-1,3:1:-1]
[-3  1]
[-4  1]
[ 0 -5]

We can also change submatrices using these indexing features:

sage: M=matrix([(1, -2, -1, -1,9), (1, 8, 6, 2,2), (1, 1, -1, 1,4), (-1, 2, -2, -1,4)]); M
[ 1 -2 -1 -1  9]
[ 1  8  6  2  2]
[ 1  1 -1  1  4]
[-1  2 -2 -1  4]

Set the 2 x 2 submatrix of M, starting at row index and column index 1:

sage: M[1:3,1:3] = [[1,0],[0,1]]; M
[ 1 -2 -1 -1  9]
[ 1  1  0  2  2]
[ 1  0  1  1  4]
[-1  2 -2 -1  4]

Set the 2 x 3 submatrix of M starting at row index and column index 1:

sage: M[1:3,[1..3]] = M[2:4,0:3]; M
[ 1 -2 -1 -1  9]
[ 1  1  0  1  2]
[ 1 -1  2 -2  4]
[-1  2 -2 -1  4]

Set part of the first column of M:

sage: M[1:,0]=[[2],[3],[4]]; M
[ 1 -2 -1 -1  9]
[ 2  1  0  1  2]
[ 3 -1  2 -2  4]
[ 4  2 -2 -1  4]

Or do a similar thing with a vector:

sage: M[1:,0]=vector([-2,-3,-4]); M
[ 1 -2 -1 -1  9]
[-2  1  0  1  2]
[-3 -1  2 -2  4]
[-4  2 -2 -1  4]

Or a constant:

sage: M[1:,0]=30; M
[ 1 -2 -1 -1  9]
[30  1  0  1  2]
[30 -1  2 -2  4]
[30  2 -2 -1  4]

Set the first row of M:

sage: M[0,:]=[[20,21,22,23,24]]; M
[20 21 22 23 24]
[30  1  0  1  2]
[30 -1  2 -2  4]
[30  2 -2 -1  4]
sage: M[0,:]=vector([0,1,2,3,4]); M
[ 0  1  2  3  4]
[30  1  0  1  2]
[30 -1  2 -2  4]
[30  2 -2 -1  4]
sage: M[0,:]=-3; M
[-3 -3 -3 -3 -3]
[30  1  0  1  2]
[30 -1  2 -2  4]
[30  2 -2 -1  4]


sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A
[ 3  2 -5  0]
[ 1 -1  1 -4]
[ 1  0  1 -3]

We can use the step feature of slices to set every other column:

sage: A[:,0:3:2] = 5; A
[ 5  2  5  0]
[ 5 -1  5 -4]
[ 5  0  5 -3]

sage: A[1:,0:4:2] = [[100,200],[300,400]]; A
[  5   2   5   0]
[100  -1 200  -4]
[300   0 400  -3]

We can also count backwards to flip the matrix upside down:

sage: A[::-1,:]=A; A
[300   0 400  -3]
[100  -1 200  -4]
[  5   2   5   0]


sage: A[1:,3::-1]=[[2,3,0,1],[9,8,7,6]]; A
[300   0 400  -3]
[  1   0   3   2]
[  6   7   8   9]

sage: A[1:,::-2] = A[1:,::2]; A
[300   0 400  -3]
[  1   3   3   1]
[  6   8   8   6]

sage: A[::-1,3:1:-1] = [[4,3],[1,2],[-1,-2]]; A
[300   0  -2  -1]
[  1   3   2   1]
[  6   8   3   4]

We save and load a matrix:

sage: A = matrix(Integers(8),3,range(9))
sage: loads(dumps(A)) == A
True

MUTABILITY: Matrices are either immutable or not. When initially created, matrices are typically mutable, so one can change their entries. Once a matrix A is made immutable using A.set_immutable() the entries of A cannot be changed, and A can never be made mutable again. However, properties of A such as its rank, characteristic polynomial, etc., are all cached so computations involving A may be more efficient. Once A is made immutable it cannot be changed back. However, one can obtain a mutable copy of A using copy(A).

EXAMPLES:

sage: A = matrix(RR,2,[1,10,3.5,2])
sage: A.set_immutable()
sage: copy(A) is A
False

The echelon form method always returns immutable matrices with known rank.

EXAMPLES:

sage: A = matrix(Integers(8),3,range(9))
sage: A.determinant()
0
sage: A[0,0] = 5
sage: A.determinant()
1
sage: A.set_immutable()
sage: A[0,0] = 5
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use copy(M) to change a copy of M).

Implementation and Design

Class Diagram (an x means that class is currently supported):

x Matrix
x   Matrix_sparse
x     Matrix_generic_sparse
x     Matrix_integer_sparse
x     Matrix_rational_sparse
      Matrix_cyclo_sparse
x     Matrix_modn_sparse
      Matrix_RR_sparse
      Matrix_CC_sparse
      Matrix_RDF_sparse
      Matrix_CDF_sparse

x  Matrix_dense
x     Matrix_generic_dense
x     Matrix_integer_dense
x     Matrix_rational_dense
      Matrix_cyclo_dense    -- idea: restrict scalars to QQ, compute charpoly there, then factor
x     Matrix_modn_dense
      Matrix_RR_dense
      Matrix_CC_dense
x     Matrix_real_double_dense
x     Matrix_complex_double_dense
x     Matrix_complex_ball_dense

The corresponding files in the sage/matrix library code directory are named

[matrix] [base ring] [dense or sparse].
New matrices types can only be implemented in Cython.

*********** LEVEL 1  **********
NON-OPTIONAL
For each base field it is *absolutely* essential to completely
implement the following functionality for that base ring:

   * __cinit__     -- should use check_allocarray from cysignals.memory
                      (only needed if allocate memory)
   * __init__      -- this signature: 'def __init__(self, parent, entries, copy, coerce)'
   * __dealloc__   -- use sig_free (only needed if allocate memory)
   * set_unsafe(self, size_t i, size_t j, x) -- doesn't do bounds or any other checks; assumes x is in self._base_ring
   * get_unsafe(self, size_t i, size_t j) -- doesn't do checks
   * __richcmp__    -- always the same (I don't know why its needed -- bug in PYREX).

Note that the __init__ function must construct the all zero matrix if ``entries == None``.

*********** LEVEL 2  **********

IMPORTANT (and *highly* recommended):

After getting the special class with all level 1 functionality to
work, implement all of the following (they should not change
functionality, except speed (always faster!) in any way):

   * def _pickle(self):
          return data, version
   * def _unpickle(self, data, int version)
          reconstruct matrix from given data and version; may assume _parent, _nrows, and _ncols are set.
          Use version numbers >= 0 so if you change the pickle strategy then
          old objects still unpickle.
   * cdef _list -- list of underlying elements (need not be a copy)
   * cdef _dict -- sparse dictionary of underlying elements
   * cdef _add_ -- add two matrices with identical parents
   * _matrix_times_matrix_c_impl -- multiply two matrices with compatible dimensions and
                                    identical base rings (both sparse or both dense)
   * cpdef _richcmp_ -- compare two matrices with identical parents
   * cdef _lmul_c_impl -- multiply this matrix on the right by a scalar, i.e., self * scalar
   * cdef _rmul_c_impl -- multiply this matrix on the left by a scalar, i.e., scalar * self
   * __copy__
   * __neg__

The list and dict returned by _list and _dict will *not* be changed
by any internal algorithms and are not accessible to the user.

*********** LEVEL 3  **********
OPTIONAL:

   * cdef _sub_
   * __invert__
   * _multiply_classical
   * __deepcopy__

Further special support:
   * Matrix windows -- to support Strassen multiplication for a given base ring.
   * Other functions, e.g., transpose, for which knowing the
     specific representation can be helpful.

.. note::

   - For caching, use self.fetch and self.cache.

   - Any method that can change the matrix should call
     ``check_mutability()`` first.  There are also many fast cdef'd bounds checking methods.

   - Kernels of matrices
     Implement only a left_kernel() or right_kernel() method, whichever requires
     the least overhead (usually meaning little or no transposing).  Let the
     methods in the matrix2 class handle left, right, generic kernel distinctions.