Dense matrices over multivariate polynomials over fields¶
This implementation inherits from Matrix_generic_dense, i.e. it is not optimized for speed only some methods were added.
AUTHOR:
Martin Albrecht <malb@informatik.uni-bremen.de>
- class sage.matrix.matrix_mpolynomial_dense.Matrix_mpolynomial_dense¶
Bases:
sage.matrix.matrix_generic_dense.Matrix_generic_dense
Dense matrix over a multivariate polynomial ring over a field.
- determinant(algorithm=None)¶
Return the determinant of this matrix
INPUT:
algorithm
– ignored
EXAMPLES:
We compute the determinant of the arbitrary \(3x3\) matrix:
sage: R = PolynomialRing(QQ, 9, 'x') sage: A = matrix(R, 3, R.gens()) sage: A [x0 x1 x2] [x3 x4 x5] [x6 x7 x8] sage: A.determinant() -x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8
We check if two implementations agree on the result:
sage: R.<x,y> = QQ[] sage: C = matrix(R, [[-6/5*x*y - y^2, -6*y^2 - 1/4*y], ....: [ -1/3*x*y - 3, x*y - x]]) sage: C.determinant() -6/5*x^2*y^2 - 3*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 - 18*y^2 - 3/4*y sage: C.change_ring(R.change_ring(QQbar)).det() (-6/5)*x^2*y^2 + (-3)*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 + (-18)*y^2 + (-3/4)*y
Finally, we check whether the Singular interface is working:
sage: R.<x,y> = RR[] sage: C = matrix(R, [[0.368965517352886*y^2 + 0.425700773972636*x, -0.800362171389760*y^2 - 0.807635502485287], ....: [0.706173539423122*y^2 - 0.915986060298440, 0.897165181570476*y + 0.107903328188376]]) sage: C.determinant() 0.565194587390682*y^4 + 0.33102301536914...*y^3 + 0.381923912175852*x*y - 0.122977163520282*y^2 + 0.0459345303240150*x - 0.739782862078649
ALGORITHM: Calls Singular, libSingular or native implementation.
- echelon_form(algorithm='row_reduction', **kwds)¶
Return an echelon form of
self
using chosen algorithm.By default only a usual row reduction with no divisions or column swaps is returned.
If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via
swapped_columns()
.INPUT:
algorithm
– string, which algorithm to use (default: ‘row_reduction’). Valid options are:'row_reduction'
(default) – reduce as far as possible, only divide by constant entries'frac'
– reduced echelon form over fraction field'bareiss'
– fraction free Gauss-Bareiss algorithm with column swaps
OUTPUT:
The row echelon form of A depending on the chosen algorithm, as an immutable matrix. Note that
self
is not changed by this command. UseA.echelonize()`
to change \(A\) in place.EXAMPLES:
sage: P.<x,y> = PolynomialRing(GF(127), 2) sage: A = matrix(P, 2, 2, [1, x, 1, y]) sage: A [1 x] [1 y] sage: A.echelon_form() [ 1 x] [ 0 -x + y]
The reduced row echelon form over the fraction field is as follows:
sage: A.echelon_form('frac') # over fraction field [1 0] [0 1]
Alternatively, the Gauss-Bareiss algorithm may be chosen:
sage: E = A.echelon_form('bareiss'); E [ 1 y] [ 0 x - y]
After the application of the Gauss-Bareiss algorithm the swapped columns may inspected:
sage: E.swapped_columns(), E.pivots() ((0, 1), (0, 1)) sage: A.swapped_columns(), A.pivots() (None, (0, 1))
Another approach is to row reduce as far as possible:
sage: A.echelon_form('row_reduction') [ 1 x] [ 0 -x + y]
- echelonize(algorithm='row_reduction', **kwds)¶
Transform self into a matrix in echelon form over the same base ring as
self
.If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via
swapped_columns()
.INPUT:
algorithm
– string, which algorithm to use. Valid options are:'row_reduction'
– reduce as far as possible, only divide by constant entries'bareiss'
– fraction free Gauss-Bareiss algorithm with column swaps
EXAMPLES:
sage: P.<x,y> = PolynomialRing(QQ, 2) sage: A = matrix(P, 2, 2, [1/2, x, 1, 3/4*y+1]) sage: A [ 1/2 x] [ 1 3/4*y + 1] sage: B = copy(A) sage: B.echelonize('bareiss'); B [ 1 3/4*y + 1] [ 0 x - 3/8*y - 1/2] sage: B = copy(A) sage: B.echelonize('row_reduction'); B [ 1 2*x] [ 0 -2*x + 3/4*y + 1] sage: P.<x,y> = PolynomialRing(QQ, 2) sage: A = matrix(P,2,3,[2,x,0,3,y,1]); A [2 x 0] [3 y 1] sage: E = A.echelon_form('bareiss'); E [1 3 y] [0 2 x] sage: E.swapped_columns() (2, 0, 1) sage: A.pivots() (0, 1, 2)
- pivots()¶
Return the pivot column positions of this matrix as a list of integers.
This returns a list, of the position of the first nonzero entry in each row of the echelon form.
OUTPUT:
A list of Python ints.
EXAMPLES:
sage: matrix([PolynomialRing(GF(2), 2, 'x').gen()]).pivots() (0,) sage: K = QQ['x,y'] sage: x, y = K.gens() sage: m = matrix(K, [(-x, 1, y, x - y), (-x*y, y, y^2 - 1, x*y - y^2 + x), (-x*y + x, y - 1, y^2 - y - 2, x*y - y^2 + x + y)]) sage: m.pivots() (0, 2) sage: m.rank() 2
- swapped_columns()¶
Return which columns were swapped during the Gauss-Bareiss reduction
OUTPUT:
Return a tuple representing the column swaps during the last application of the Gauss-Bareiss algorithm (see
echelon_form()
for details).The tuple as length equal to the rank of self and the value at the \(i\)-th position indicates the source column which was put as the \(i\)-th column.
If no Gauss-Bareiss reduction was performed yet, None is returned.
EXAMPLES:
sage: R.<x,y> = QQ[] sage: C = random_matrix(R, 2, 2, terms=2) sage: while C.rank() != 2: ....: C = random_matrix(R, 2, 2, terms=2) sage: C.swapped_columns() sage: E = C.echelon_form('bareiss') sage: sorted(E.swapped_columns()) [0, 1]