Dense matrices over the rational field¶
EXAMPLES:
We create a 3x3 matrix with rational entries and do some operations with it.
sage: a = matrix(QQ, 3,3, [1,2/3, -4/5, 1,1,1, 8,2, -3/19]); a
[ 1 2/3 -4/5]
[ 1 1 1]
[ 8 2 -3/19]
sage: a.det()
2303/285
sage: a.charpoly()
x^3 - 35/19*x^2 + 1259/285*x - 2303/285
sage: b = a^(-1); b
[ -615/2303 -426/2303 418/2303]
[ 2325/2303 1779/2303 -513/2303]
[-1710/2303 950/2303 95/2303]
sage: b.det()
285/2303
sage: a == b
False
sage: a < b
False
sage: b < a
True
sage: a > b
True
sage: a*b
[1 0 0]
[0 1 0]
[0 0 1]
- class sage.matrix.matrix_rational_dense.MatrixWindow¶
Bases:
object
- class sage.matrix.matrix_rational_dense.Matrix_rational_dense¶
Bases:
sage.matrix.matrix_dense.Matrix_dense
INPUT:
parent
– a matrix space overQQ
entries
– seematrix()
copy
– ignored (for backwards compatibility)coerce
– if False, assume without checking that the entries are of typeRational
.
- LLL(*args, **kwargs)¶
Return an LLL reduced or approximated LLL reduced lattice for
self
interpreted as a lattice.For details on input parameters, see
sage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()
.EXAMPLES:
sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)]) sage: A.LLL() [ 1/28 -1/40 -1/18] [ 1/28 -1/40 1/18] [ 0 -3/40 0]
- add_to_entry(i, j, elt)¶
Add
elt
to the entry at position(i,j)
EXAMPLES:
sage: m = matrix(QQ, 2, 2) sage: m.add_to_entry(0, 0, -1/3) sage: m [-1/3 0] [ 0 0]
- antitranspose()¶
Returns the antitranspose of self, without changing self.
EXAMPLES:
sage: A = matrix(QQ,2,3,range(6)) sage: type(A) <type 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> sage: A.antitranspose() [5 2] [4 1] [3 0] sage: A [0 1 2] [3 4 5] sage: A.subdivide(1,2); A [0 1|2] [---+-] [3 4|5] sage: A.antitranspose() [5|2] [-+-] [4|1] [3|0]
- change_ring(R)¶
Create the matrix over R with entries the entries of self coerced into R.
EXAMPLES:
sage: a = matrix(QQ,2,[1/2,-1,2,3]) sage: a.change_ring(GF(3)) [2 2] [2 0] sage: a.change_ring(ZZ) Traceback (most recent call last): ... TypeError: matrix has denominators so can...t change to ZZ sage: b = a.change_ring(QQ['x']); b [1/2 -1] [ 2 3] sage: b.parent() Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in x over Rational Field
- charpoly(var='x', algorithm=None)¶
Return the characteristic polynomial of this matrix.
Note
The characteristic polynomial is defined as \(\det(xI-A)\).
INPUT:
var
- (optional) name of the variable as a stringalgorithm
– an optional specification of an algorithm. It can be one of:None
: (default) will use flint for small dimensions and linbox otherwise'flint'
: uses flint library'linbox'
: uses linbox library'generic'
: uses Sage generic implementation
OUTPUT: a polynomial over the rational numbers.
EXAMPLES:
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4]) sage: f = a.charpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 sage: f(a) [0 0 0] [0 0 0] [0 0 0]
- column(i, from_list=False)¶
Return the i-th column of this matrix as a dense vector.
INPUT:
i
- integerfrom_list
- ignored
EXAMPLES:
sage: m = matrix(QQ, 3, 2, [1/5,-2/3,3/4,4/9,-1,0]) sage: m.column(1) (-2/3, 4/9, 0) sage: m.column(1,from_list=True) (-2/3, 4/9, 0) sage: m.column(-1) (-2/3, 4/9, 0) sage: m.column(-2) (1/5, 3/4, -1) sage: m.column(2) Traceback (most recent call last): ... IndexError: column index out of range sage: m.column(-3) Traceback (most recent call last): ... IndexError: column index out of range
- decomposition(is_diagonalizable=False, dual=False, algorithm=None, height_guess=None, proof=None)¶
Returns the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be sorted in the same way as the corresponding factors of the characteristic polynomial.
Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square. This function computes maximal subspaces W_1, …, W_n corresponding to Galois conjugacy classes of eigenvalues of A. More precisely, let f(X) be the characteristic polynomial of A. This function computes the subspace \(W_i = ker(g_(A)^n)\), where g_i(X) is an irreducible factor of f(X) and g_i(X) exactly divides f(X). If the optional parameter is_diagonalizable is True, then we let W_i = ker(g(A)), since then we know that ker(g(A)) = \(ker(g(A)^n)\).
If dual is True, also returns the corresponding decomposition of V under the action of the transpose of A. The factors are guaranteed to correspond.
INPUT:
is_diagonalizable
- ignoreddual
- whether to also return decompositions for the dualalgorithm
- an optional specification of an algorithmNone
- (default) use default algorithm for computing Echelon forms‘multimodular’: much better if the answers factors have small height
height_guess
- positive integer; only used by the multimodular algorithmproof
- bool or None (default: None, see proof.linear_algebra or sage.structure.proof); only used by the multimodular algorithm. Note that the Sage global default is proof=True.
Note
IMPORTANT: If you expect that the subspaces in the answer are spanned by vectors with small height coordinates, use algorithm=’multimodular’ and height_guess=1; this is potentially much faster than the default. If you know for a fact the answer will be very small, use algorithm=’multimodular’, height_guess=bound on height, proof=False.
You can get very very fast decomposition with proof=False.
EXAMPLES:
sage: a = matrix(QQ,3,[1..9]) sage: a.decomposition() [ (Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 -2 1], True), (Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1] [ 0 1 2], True) ]
- denominator()¶
Return the denominator of this matrix.
OUTPUT: a Sage Integer
EXAMPLES:
sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b [-5007/293 1 2] [ 3 4 5] sage: b.denominator() 293 sage: matrix(QQ, 2, [1/2, 1/3, 1/4, 1/5]).denominator() 60
- determinant(algorithm=None, proof=None)¶
Return the determinant of this matrix.
INPUT:
algorithm
– an optional specification of an algorithm. It can be one ofNone
: (default) uses flint'flint'
: uses flint library'pari'
: uses PARI library'integer'
: removes denominator and call determinant on the correspondinginteger matrix
'generic'
: calls the generic Sage implementation
proof
- bool or None; if None use proof.linear_algebra(); only relevant for the padic algorithm.
Note
It would be VERY VERY hard for det to fail even with proof=False.
EXAMPLES:
sage: m = matrix(QQ,3,[1,2/3,4/5, 2,2,2, 5,3,2/5]) sage: m.determinant() -34/15 sage: m.charpoly() x^3 - 17/5*x^2 - 122/15*x + 34/15 sage: m = matrix(QQ, 3, [(1/i)**j for i in range(2,5) for j in range(3)]) sage: m.determinant(algorithm="flint") -1/288 sage: m = matrix(QQ, 4, [(-1)**n/n for n in range(1,17)]) sage: m.determinant(algorithm="pari") 2/70945875 sage: m = matrix(QQ, 5, [1/(i+j+1) for i in range(5) for j in range(5)]) sage: m.determinant(algorithm="integer") 1/266716800000
On non-square matrices, the method raises a
ValueError
:sage: matrix(QQ, 2, 3).determinant(algorithm='flint') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='pari') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='integer') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='generic') Traceback (most recent call last): ... ValueError: non square matrix
- echelon_form(algorithm=None, height_guess=None, proof=None, **kwds)¶
Return the echelon form of this matrix.
The (row) echelon form of a matrix, see Wikipedia article Row_echelon_form, is the matrix obtained by performing Gauss elimination on the rows of the matrix.
INPUT: See
echelonize()
for the options.EXAMPLES:
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] sage: a.echelon_form() [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0] sage: a.echelon_form(algorithm='multimodular') [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
The result is an immutable matrix, so if you want to modify the result then you need to make a copy. This checks that trac ticket #10543 is fixed.:
sage: A = matrix(QQ, 2, range(6)) sage: E = A.echelon_form() sage: E.is_mutable() False sage: F = copy(E) sage: F[0,0] = 50 sage: F [50 0 -1] [ 0 1 2]
- echelonize(algorithm=None, height_guess=None, proof=None, **kwds)¶
Transform the matrix
self
into reduced row echelon form in place.INPUT:
algorithm
– an optional specification of an algorithm. One of
None
: (default) uses flint for small dimension and multimodular otherwise'flint'
: use the flint library,'padic'
: an algorithm based on the IML p-adic solver,'multimodular'
: uses a multimodular algorithm the uses linbox modulo many primes (likely to be faster when coefficients are huge),'classical'
: just clear each column using Gauss elimination.
height_guess
,**kwds
- all passed to the multimodular algorithm; ignored by other algorithms.proof
- bool or None (default: None, see proof.linear_algebra or sage.structure.proof). Passed to the multimodular algorithm. Note that the Sage global default isproof=True
.
EXAMPLES:
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] sage: a.echelonize() sage: a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5 sage: a.echelonize(algorithm='multimodular') sage: a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
- height()¶
Return the height of this matrix, which is the maximum of the absolute values of all numerators and denominators of entries in this matrix.
OUTPUT: an Integer
EXAMPLES:
sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b [-5007/293 1 2] [ 3 4 5] sage: b.height() 5007
- inverse(algorithm=None, check_invertible=True)¶
Return the inverse of this matrix
INPUT:
algorithm
– an optional specification of an algorithm. It can be one ofNone
: (default) uses flint'flint'
: uses flint library'pari'
: uses PARI library'iml'
: uses IML library
check_invertible
- only used whenalgorithm=iml
. Whether to check that matrix is invertible
EXAMPLES:
sage: a = matrix(QQ,3,[1,2,5,3,2,1,1,1,1,]) sage: a.inverse() [1/2 3/2 -4] [ -1 -2 7] [1/2 1/2 -2] sage: a = matrix(QQ, 2, [1, 5, 17, 3]) sage: a.inverse(algorithm="flint") [-3/82 5/82] [17/82 -1/82] sage: a.inverse(algorithm="flint") * a [1 0] [0 1] sage: a = matrix(QQ, 2, [-1, 5, 12, -3]) sage: a.inverse(algorithm="iml") [1/19 5/57] [4/19 1/57] sage: a.inverse(algorithm="iml") * a [1 0] [0 1] sage: a = matrix(QQ, 4, primes_first_n(16)) sage: a.inverse(algorithm="pari") [ 3/11 -12/55 -1/5 2/11] [ -5/11 -2/55 3/10 -3/22] [ -13/22 307/440 -1/10 -9/88] [ 15/22 -37/88 0 7/88]
On singular matrices this method raises a
ZeroDivisionError
:sage: a = matrix(QQ, 2) sage: a.inverse(algorithm="flint") Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular sage: a.inverse(algorithm="iml") Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular sage: a.inverse(algorithm="pari") Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular
- matrix_from_columns(columns)¶
Return the matrix constructed from self using columns with indices in the columns list.
EXAMPLES:
sage: A = matrix(QQ, 3, range(9)) sage: A [0 1 2] [3 4 5] [6 7 8] sage: A.matrix_from_columns([2,1]) [2 1] [5 4] [8 7] sage: A.matrix_from_columns((2,1,0,2)) [2 1 0 2] [5 4 3 5] [8 7 6 8]
- minpoly(var='x', algorithm=None)¶
Return the minimal polynomial of this matrix
INPUT:
var
- (optional) the variable name as a string (default is ‘x’)algorithm
- an optional specification of an algorithm. It can be one ofNone
: (default) will use linbox'linbox'
: uses the linbox library'generic'
: uses the generic Sage implementation
OUTPUT: a polynomial over the rationals
EXAMPLES:
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4]) sage: f = a.minpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 sage: a = Mat(ZZ,4)(range(16)) sage: f = a.minpoly(); f.factor() x * (x^2 - 30*x - 80) sage: f(a) == 0 True
sage: a = matrix(QQ, 4, [1..4^2]) sage: factor(a.minpoly()) x * (x^2 - 34*x - 80) sage: factor(a.minpoly('y')) y * (y^2 - 34*y - 80) sage: factor(a.charpoly()) x^2 * (x^2 - 34*x - 80) sage: b = matrix(QQ, 4, [-1, 2, 2, 0, 0, 4, 2, 2, 0, 0, -1, -2, 0, -4, 0, 4]) sage: a = matrix(QQ, 4, [1, 1, 0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5]) sage: c = b^(-1)*a*b sage: factor(c.minpoly()) (x - 5) * (x - 1)^2 sage: factor(c.charpoly()) (x - 5)^2 * (x - 1)^2
Check consistency:
sage: for _ in range(100): ....: dim = randint(0, 10) ....: m = random_matrix(QQ, dim, num_bound=8, den_bound=8) ....: p_linbox = m.charpoly(algorithm='linbox'); m._clear_cache() ....: p_generic = m.charpoly(algorithm='generic') ....: assert p_linbox == p_generic
- prod_of_row_sums(cols)¶
- randomize(density=1, num_bound=2, den_bound=2, distribution=None, nonzero=False)¶
Randomize
density
proportion of the entries of this matrix, leaving the rest unchanged.If
x
andy
are given, randomized entries of this matrix have numerators and denominators bounded byx
andy
and have density 1.INPUT:
density
- number between 0 and 1 (default: 1)num_bound
- numerator bound (default: 2)den_bound
- denominator bound (default: 2)distribution
-None
or ‘1/n’ (default:None
); if ‘1/n’ thennum_bound
,den_bound
are ignored and numbers are chosen using the GMP functionmpq_randomize_entry_recip_uniform
OUTPUT:
None, the matrix is modified in-space
EXAMPLES:
The default distribution:
sage: from collections import defaultdict sage: total_count = 0 sage: dic = defaultdict(Integer) sage: def add_samples(distribution=None): ....: global dic, total_count ....: for _ in range(100): ....: A = Matrix(QQ, 2, 4, 0) ....: A.randomize(distribution=distribution) ....: for a in A.list(): ....: dic[a] += 1 ....: total_count += 1.0 sage: expected = {-2: 1/9, -1: 3/18, -1/2: 1/18, 0: 3/9, ....: 1/2: 1/18, 1: 3/18, 2: 1/9} sage: add_samples() sage: while not all(abs(dic[a]/total_count - expected[a]) < 0.001 for a in dic): ....: add_samples()
The distribution
'1/n'
:sage: def mpq_randomize_entry_recip_uniform(): ....: r = 2*random() - 1 ....: if r == 0: r = 1 ....: num = int(4/(5*r)) ....: r = random() ....: if r == 0: r = 1 ....: den = int(1/random()) ....: return Integer(num)/Integer(den) sage: total_count = 0 sage: dic = defaultdict(Integer) sage: dic2 = defaultdict(Integer) sage: add_samples('1/n') sage: for _ in range(8): ....: dic2[mpq_randomize_entry_recip_uniform()] += 1 sage: while not all(abs(dic[a] - dic2[a])/total_count < 0.005 for a in dic): ....: add_samples('1/n') ....: for _ in range(800): ....: dic2[mpq_randomize_entry_recip_uniform()] += 1
The default can be used to obtain matrices of different rank:
sage: ranks = [False]*11 sage: while not all(ranks): ....: for dens in (0.05, 0.1, 0.2, 0.5): ....: A = Matrix(QQ, 10, 10, 0) ....: A.randomize(dens) ....: ranks[A.rank()] = True
The default density is \(6/9\):
sage: def add_sample(density, num_rows, num_cols): ....: global density_sum, total_count ....: total_count += 1.0 ....: A = Matrix(QQ, num_rows, num_cols, 0) ....: A.randomize(density) ....: density_sum += float(A.density()) sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9 sage: add_sample(1.0, 100, 100) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(1.0, 100, 100)
The modified density depends on the number of columns:
sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9*0.5 sage: add_sample(0.5, 100, 2) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5, 100, 2) sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9*(1.0 - (99/100)^50) sage: expected_density 0.263... sage: add_sample(0.5, 100, 100) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5, 100, 100)
Modifying the bounds for numerator and denominator:
sage: num_dic = defaultdict(Integer) sage: den_dic = defaultdict(Integer) sage: while not (all(num_dic[i] for i in range(-200, 201)) ....: and all(den_dic[i] for i in range(1, 101))): ....: a = matrix(QQ, 2, 4) ....: a.randomize(num_bound=200, den_bound=100) ....: for q in a.list(): ....: num_dic[q.numerator()] += 1 ....: den_dic[q.denominator()] += 1 sage: len(num_dic) 401 sage: len(den_dic) 100
- rank(algorithm=None)¶
Return the rank of this matrix.
INPUT:
algorithm
- an optional specification of an algorithm. One ofNone
: (default) will use flint'flint'
: uses the flint library'pari'
: uses the PARI library'integer'
: eliminate denominators and calls the rank function on the corresponding integer matrix
EXAMPLES:
sage: matrix(QQ,3,[1..9]).rank() 2 sage: matrix(QQ,100,[1..100^2]).rank() 2
- row(i, from_list=False)¶
Return the i-th row of this matrix as a dense vector.
INPUT:
i
- integerfrom_list
- ignored
EXAMPLES:
sage: m = matrix(QQ, 2, [1/5, -2/3, 3/4, 4/9]) sage: m.row(0) (1/5, -2/3) sage: m.row(1) (3/4, 4/9) sage: m.row(1, from_list=True) (3/4, 4/9) sage: m.row(-2) (1/5, -2/3) sage: m.row(2) Traceback (most recent call last): ... IndexError: row index out of range sage: m.row(-3) Traceback (most recent call last): ... IndexError: row index out of range
- set_row_to_multiple_of_row(i, j, s)¶
Set row i equal to s times row j.
EXAMPLES:
sage: a = matrix(QQ,2,3,range(6)); a [0 1 2] [3 4 5] sage: a.set_row_to_multiple_of_row(1,0,-3) sage: a [ 0 1 2] [ 0 -3 -6]
- transpose()¶
Returns the transpose of self, without changing self.
EXAMPLES:
We create a matrix, compute its transpose, and note that the original matrix is not changed.
sage: A = matrix(QQ, 2, 3, range(6)) sage: type(A) <type 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> sage: B = A.transpose() sage: print(B) [0 3] [1 4] [2 5] sage: print(A) [0 1 2] [3 4 5]
.T
is a convenient shortcut for the transpose:sage: print(A.T) [0 3] [1 4] [2 5]
sage: A.subdivide(None, 1); A [0|1 2] [3|4 5] sage: A.transpose() [0 3] [---] [1 4] [2 5]