Base class for sparse matrices¶
- class sage.matrix.matrix_sparse.Matrix_sparse¶
Bases:
sage.matrix.matrix2.Matrix
- antitranspose()¶
Return the antitranspose of
self
, without changingself
.This is the mirror image along the other diagonal.
EXAMPLES:
sage: M = MatrixSpace(QQ, 2, sparse=True) sage: A = M([1,2,3,4]); A [1 2] [3 4] sage: A.antitranspose() [4 2] [3 1]
See also
- apply_map(phi, R=None, sparse=True)¶
Apply the given map
phi
(an arbitrary Python function or callable object) to this matrix.If
R
is not given, automatically determine the base ring of the resulting matrix.INPUT:
phi
– arbitrary Python function or callable objectR
– (optional) ringsparse
– (optional, defaultTrue
) whether to return a sparse or a dense matrix
OUTPUT: a matrix over
R
EXAMPLES:
sage: m = matrix(ZZ, 10000, {(1,2): 17}, sparse=True) sage: k.<a> = GF(9) sage: f = lambda x: k(x) sage: n = m.apply_map(f) sage: n.parent() Full MatrixSpace of 10000 by 10000 sparse matrices over Finite Field in a of size 3^2 sage: n[1,2] 2
An example where the codomain is explicitly specified.
sage: n = m.apply_map(lambda x:x%3, GF(3)) sage: n.parent() Full MatrixSpace of 10000 by 10000 sparse matrices over Finite Field of size 3 sage: n[1,2] 2
If we did not specify the codomain, the resulting matrix in the above case ends up over \(\ZZ\) again:
sage: n = m.apply_map(lambda x:x%3) sage: n.parent() Full MatrixSpace of 10000 by 10000 sparse matrices over Integer Ring sage: n[1,2] 2
If self is subdivided, the result will be as well:
sage: m = matrix(2, 2, [0, 0, 3, 0]) sage: m.subdivide(None, 1); m [0|0] [3|0] sage: m.apply_map(lambda x: x*x) [0|0] [9|0]
If the map sends zero to a non-zero value, then it may be useful to get the result as a dense matrix.
sage: m = matrix(ZZ, 3, 3, [0] * 7 + [1,2], sparse=True); m [0 0 0] [0 0 0] [0 1 2] sage: parent(m) Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring sage: n = m.apply_map(lambda x: x+polygen(QQ), sparse=False); n [ x x x] [ x x x] [ x x + 1 x + 2] sage: parent(n) Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in x over Rational Field
- apply_morphism(phi)¶
Apply the morphism
phi
to the coefficients of this sparse matrix.The resulting matrix is over the codomain of
phi
.INPUT:
phi
– a morphism, sophi
is callable andphi.domain()
andphi.codomain()
are defined. The codomain must be a ring.
OUTPUT: a matrix over the codomain of
phi
EXAMPLES:
sage: m = matrix(ZZ, 3, range(9), sparse=True) sage: phi = ZZ.hom(GF(5)) sage: m.apply_morphism(phi) [0 1 2] [3 4 0] [1 2 3] sage: m.apply_morphism(phi).parent() Full MatrixSpace of 3 by 3 sparse matrices over Finite Field of size 5
- augment(right, subdivide=False)¶
Return the augmented matrix of the form:
[self | right].
EXAMPLES:
sage: M = MatrixSpace(QQ, 2, 2, sparse=True) sage: A = M([1,2, 3,4]) sage: A [1 2] [3 4] sage: N = MatrixSpace(QQ, 2, 1, sparse=True) sage: B = N([9,8]) sage: B [9] [8] sage: A.augment(B) [1 2 9] [3 4 8] sage: B.augment(A) [9 1 2] [8 3 4]
A vector may be augmented to a matrix.
sage: A = matrix(QQ, 3, 4, range(12), sparse=True) sage: v = vector(QQ, 3, range(3), sparse=True) sage: A.augment(v) [ 0 1 2 3 0] [ 4 5 6 7 1] [ 8 9 10 11 2]
The
subdivide
option will add a natural subdivision betweenself
andright
. For more details about how subdivisions are managed when augmenting, seesage.matrix.matrix1.Matrix.augment()
.sage: A = matrix(QQ, 3, 5, range(15), sparse=True) sage: B = matrix(QQ, 3, 3, range(9), sparse=True) sage: A.augment(B, subdivide=True) [ 0 1 2 3 4| 0 1 2] [ 5 6 7 8 9| 3 4 5] [10 11 12 13 14| 6 7 8]
- change_ring(ring)¶
Return the matrix obtained by coercing the entries of this matrix into the given ring.
Always returns a copy (unless
self
is immutable, in which case returnsself
).EXAMPLES:
sage: A = matrix(QQ['x,y'], 2, [0,-1,2*x,-2], sparse=True); A [ 0 -1] [2*x -2] sage: A.change_ring(QQ['x,y,z']) [ 0 -1] [2*x -2]
Subdivisions are preserved when changing rings:
sage: A.subdivide([2],[]); A [ 0 -1] [2*x -2] [-------] sage: A.change_ring(RR['x,y']) [ 0 -1.00000000000000] [2.00000000000000*x -2.00000000000000] [-------------------------------------]
- charpoly(var='x', **kwds)¶
Return the characteristic polynomial of this matrix.
Note
the generic sparse charpoly implementation in Sage is to just compute the charpoly of the corresponding dense matrix, so this could use a lot of memory. In particular, for this matrix, the charpoly will be computed using a dense algorithm.
EXAMPLES:
sage: A = matrix(ZZ, 4, range(16), sparse=True) sage: A.charpoly() x^4 - 30*x^3 - 80*x^2 sage: A.charpoly('y') y^4 - 30*y^3 - 80*y^2 sage: A.charpoly() x^4 - 30*x^3 - 80*x^2
- density()¶
Return the density of the matrix.
By density we understand the ratio of the number of nonzero positions and the number
self.nrows() * self.ncols()
, i.e. the number of possible nonzero positions.EXAMPLES:
sage: a = matrix([[],[],[],[]], sparse=True); a.density() 0 sage: a = matrix(5000,5000,{(1,2): 1}); a.density() 1/25000000
- determinant(**kwds)¶
Return the determinant of this matrix.
Note
the generic sparse determinant implementation in Sage is to just compute the determinant of the corresponding dense matrix, so this could use a lot of memory. In particular, for this matrix, the determinant will be computed using a dense algorithm.
EXAMPLES:
sage: A = matrix(ZZ, 4, range(16), sparse=True) sage: B = A + identity_matrix(ZZ, 4, sparse=True) sage: B.det() -49
- matrix_from_rows_and_columns(rows, columns)¶
Return the matrix constructed from
self
from the given rows and columns.EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3, sparse=True) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 0] sage: A.matrix_from_rows_and_columns([1], [0,2]) [3 5] sage: A.matrix_from_rows_and_columns([1,2], [1,2]) [4 5] [7 0]
Note that row and column indices can be reordered or repeated:
sage: A.matrix_from_rows_and_columns([2,1], [2,1]) [0 7] [5 4]
For example here we take from row 1 columns 2 then 0 twice, and do this 3 times.
sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0]) [5 3 3] [5 3 3] [5 3 3]
We can efficiently extract large submatrices:
sage: A = random_matrix(ZZ, 100000, density=.00005, sparse=True) # long time (4s on sage.math, 2012) sage: B = A[50000:,:50000] # long time sage: count = 0 sage: for i, j in A.nonzero_positions(): # long time ....: if i >= 50000 and j < 50000: ....: assert B[i-50000, j] == A[i, j] ....: count += 1 sage: count == sum(1 for _ in B.nonzero_positions()) # long time True
We must pass in a list of indices:
sage: A = random_matrix(ZZ,100,density=.02,sparse=True) sage: A.matrix_from_rows_and_columns(1,[2,3]) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable sage: A.matrix_from_rows_and_columns([1,2],3) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable
AUTHORS:
Jaap Spies (2006-02-18)
Didier Deshommes: some Pyrex speedups implemented
Jason Grout: sparse matrix optimizations
- transpose()¶
Return the transpose of
self
, without changingself
.EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.
sage: M = MatrixSpace(QQ, 2, sparse=True) sage: A = M([1,2,3,4]); A [1 2] [3 4] sage: B = A.transpose(); B [1 3] [2 4]
.T
is a convenient shortcut for the transpose:sage: A.T [1 3] [2 4]
See also