Morphisms between modular abelian varieties, including Hecke operators acting on modular abelian varieties¶
Sage can compute with Hecke operators on modular abelian varieties. A Hecke operator is defined by given a modular abelian variety and an index. Given a Hecke operator, Sage can compute the characteristic polynomial, and the action of the Hecke operator on various homology groups.
AUTHORS:
William Stein (2007-03)
Craig Citro (2008-03)
EXAMPLES:
sage: A = J0(54)
sage: t5 = A.hecke_operator(5); t5
Hecke operator T_5 on Abelian variety J0(54) of dimension 4
sage: t5.charpoly().factor()
(x - 3) * (x + 3) * x^2
sage: B = A.new_subvariety(); B
Abelian subvariety of dimension 2 of J0(54)
sage: t5 = B.hecke_operator(5); t5
Hecke operator T_5 on Abelian subvariety of dimension 2 of J0(54)
sage: t5.charpoly().factor()
(x - 3) * (x + 3)
sage: t5.action_on_homology().matrix()
[ 0 3 3 -3]
[-3 3 3 0]
[ 3 3 0 -3]
[-3 6 3 -3]
- class sage.modular.abvar.morphism.DegeneracyMap(parent, A, t)¶
Bases:
sage.modular.abvar.morphism.Morphism
Create the degeneracy map of index t in parent defined by the matrix A.
INPUT:
parent
- a space of homomorphisms of abelian varietiesA
- a matrix defining selft
- a list of indices defining the degeneracy map
EXAMPLES:
sage: J0(44).degeneracy_map(11,2) Degeneracy map from Abelian variety J0(44) of dimension 4 to Abelian variety J0(11) of dimension 1 defined by [2] sage: J0(44)[0].degeneracy_map(88,2) Degeneracy map from Simple abelian subvariety 11a(1,44) of dimension 1 of J0(44) to Abelian variety J0(88) of dimension 9 defined by [2]
- t()¶
Return the list of indices defining self.
EXAMPLES:
sage: J0(22).degeneracy_map(44).t() [1] sage: J = J0(22) * J0(11) sage: J.degeneracy_map([44,44], [2,1]) Degeneracy map from Abelian variety J0(22) x J0(11) of dimension 3 to Abelian variety J0(44) x J0(44) of dimension 8 defined by [2, 1] sage: J.degeneracy_map([44,44], [2,1]).t() [2, 1]
- class sage.modular.abvar.morphism.HeckeOperator(abvar, n)¶
Bases:
sage.modular.abvar.morphism.Morphism
A Hecke operator acting on a modular abelian variety.
- action_on_homology(R=Integer Ring)¶
Return the action of this Hecke operator on the homology \(H_1(A; R)\) of this abelian variety with coefficients in \(R\).
EXAMPLES:
sage: A = J0(43) sage: t2 = A.hecke_operator(2); t2 Hecke operator T_2 on Abelian variety J0(43) of dimension 3 sage: h2 = t2.action_on_homology(); h2 Hecke operator T_2 on Integral Homology of Abelian variety J0(43) of dimension 3 sage: h2.matrix() [-2 1 0 0 0 0] [-1 1 1 0 -1 0] [-1 0 -1 2 -1 1] [-1 0 1 1 -1 1] [ 0 -2 0 2 -2 1] [ 0 -1 0 1 0 -1] sage: h2 = t2.action_on_homology(GF(2)); h2 Hecke operator T_2 on Homology with coefficients in Finite Field of size 2 of Abelian variety J0(43) of dimension 3 sage: h2.matrix() [0 1 0 0 0 0] [1 1 1 0 1 0] [1 0 1 0 1 1] [1 0 1 1 1 1] [0 0 0 0 0 1] [0 1 0 1 0 1]
- characteristic_polynomial(var='x')¶
Return the characteristic polynomial of this Hecke operator in the given variable.
INPUT:
var
- a string (default: ‘x’)
OUTPUT: a polynomial in var over the rational numbers.
EXAMPLES:
sage: A = J0(43)[1]; A Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43) sage: t2 = A.hecke_operator(2); t2 Hecke operator T_2 on Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43) sage: f = t2.characteristic_polynomial(); f x^2 - 2 sage: f.parent() Univariate Polynomial Ring in x over Integer Ring sage: f.factor() x^2 - 2 sage: t2.characteristic_polynomial('y') y^2 - 2
- charpoly(var='x')¶
Synonym for
self.characteristic_polynomial(var)
.INPUT:
var
- string (default: ‘x’)
EXAMPLES:
sage: A = J1(13) sage: t2 = A.hecke_operator(2); t2 Hecke operator T_2 on Abelian variety J1(13) of dimension 2 sage: f = t2.charpoly(); f x^2 + 3*x + 3 sage: f.factor() x^2 + 3*x + 3 sage: t2.charpoly('y') y^2 + 3*y + 3
- index()¶
Return the index of this Hecke operator. (For example, if this is the operator \(T_n\), then the index is the integer \(n\).)
OUTPUT:
n
- a (Sage) Integer
EXAMPLES:
sage: J = J0(15) sage: t = J.hecke_operator(53) sage: t Hecke operator T_53 on Abelian variety J0(15) of dimension 1 sage: t.index() 53 sage: t = J.hecke_operator(54) sage: t Hecke operator T_54 on Abelian variety J0(15) of dimension 1 sage: t.index() 54
sage: J = J1(12345) sage: t = J.hecke_operator(997) ; t Hecke operator T_997 on Abelian variety J1(12345) of dimension 5405473 sage: t.index() 997 sage: type(t.index()) <type 'sage.rings.integer.Integer'>
- matrix()¶
Return the matrix of self acting on the homology \(H_1(A, ZZ)\) of this abelian variety with coefficients in \(\ZZ\).
EXAMPLES:
sage: J0(47).hecke_operator(3).matrix() [ 0 0 1 -2 1 0 -1 0] [ 0 0 1 0 -1 0 0 0] [-1 2 0 0 2 -2 1 -1] [-2 1 1 -1 3 -1 -1 0] [-1 -1 1 0 1 0 -1 1] [-1 0 0 -1 2 0 -1 0] [-1 -1 2 -2 2 0 -1 0] [ 0 -1 0 0 1 0 -1 1]
sage: J0(11).hecke_operator(7).matrix() [-2 0] [ 0 -2] sage: (J0(11) * J0(33)).hecke_operator(7).matrix() [-2 0 0 0 0 0 0 0] [ 0 -2 0 0 0 0 0 0] [ 0 0 0 0 2 -2 2 -2] [ 0 0 0 -2 2 0 2 -2] [ 0 0 0 0 2 0 4 -4] [ 0 0 -4 0 2 2 2 -2] [ 0 0 -2 0 2 2 0 -2] [ 0 0 -2 0 0 2 0 -2]
sage: J0(23).hecke_operator(2).matrix() [ 0 1 -1 0] [ 0 1 -1 1] [-1 2 -2 1] [-1 1 0 -1]
- n()¶
Alias for
self.index()
.EXAMPLES:
sage: J = J0(17) sage: J.hecke_operator(5).n() 5
- class sage.modular.abvar.morphism.Morphism(parent, A, copy_matrix=True)¶
Bases:
sage.modular.abvar.morphism.Morphism_abstract
,sage.modules.matrix_morphism.MatrixMorphism
- restrict_domain(sub)¶
Restrict self to the subvariety sub of self.domain().
EXAMPLES:
sage: J = J0(37) ; A, B = J.decomposition() sage: A.lattice().matrix() [ 1 -1 1 0] [ 0 0 2 -1] sage: B.lattice().matrix() [1 1 1 0] [0 0 0 1] sage: T = J.hecke_operator(2) ; T.matrix() [-1 1 1 -1] [ 1 -1 1 0] [ 0 0 -2 1] [ 0 0 0 0] sage: T.restrict_domain(A) Abelian variety morphism: From: Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37) To: Abelian variety J0(37) of dimension 2 sage: T.restrict_domain(A).matrix() [-2 2 -2 0] [ 0 0 -4 2] sage: T.restrict_domain(B) Abelian variety morphism: From: Simple abelian subvariety 37b(1,37) of dimension 1 of J0(37) To: Abelian variety J0(37) of dimension 2 sage: T.restrict_domain(B).matrix() [0 0 0 0] [0 0 0 0]
- class sage.modular.abvar.morphism.Morphism_abstract(parent)¶
Bases:
sage.modules.matrix_morphism.MatrixMorphism_abstract
A morphism between modular abelian varieties.
EXAMPLES:
sage: t = J0(11).hecke_operator(2) sage: from sage.modular.abvar.morphism import Morphism sage: isinstance(t, Morphism) True
- cokernel()¶
Return the cokernel of self.
OUTPUT:
A
- an abelian variety (the cokernel)phi
- a quotient map from self.codomain() to the cokernel of self
EXAMPLES:
sage: t = J0(33).hecke_operator(2) sage: (t-1).cokernel() (Abelian subvariety of dimension 1 of J0(33), Abelian variety morphism: From: Abelian variety J0(33) of dimension 3 To: Abelian subvariety of dimension 1 of J0(33))
Projection will always have cokernel zero.
sage: J0(37).projection(J0(37)[0]).cokernel() (Simple abelian subvariety of dimension 0 of J0(37), Abelian variety morphism: From: Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37) To: Simple abelian subvariety of dimension 0 of J0(37))
Here we have a nontrivial cokernel of a Hecke operator, as the T_2-eigenvalue for the newform 37b is 0.
sage: J0(37).hecke_operator(2).cokernel() (Abelian subvariety of dimension 1 of J0(37), Abelian variety morphism: From: Abelian variety J0(37) of dimension 2 To: Abelian subvariety of dimension 1 of J0(37)) sage: AbelianVariety('37b').newform().q_expansion(5) q + q^3 - 2*q^4 + O(q^5)
- complementary_isogeny()¶
Returns the complementary isogeny of self.
EXAMPLES:
sage: J = J0(43) sage: A = J[1] sage: T5 = A.hecke_operator(5) sage: T5.is_isogeny() True sage: T5.complementary_isogeny() Abelian variety endomorphism of Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43) sage: (T5.complementary_isogeny() * T5).matrix() [2 0 0 0] [0 2 0 0] [0 0 2 0] [0 0 0 2]
- factor_out_component_group()¶
View self as a morphism \(f:A \to B\). Then \(\ker(f)\) is an extension of an abelian variety \(C\) by a finite component group \(G\). This function constructs a morphism \(g\) with domain \(A\) and codomain Q isogenous to \(C\) such that \(\ker(g)\) is equal to \(C\).
OUTPUT: a morphism
EXAMPLES:
sage: A,B,C = J0(33) sage: pi = J0(33).projection(A) sage: pi.kernel() (Finite subgroup with invariants [5] over QQbar of Abelian variety J0(33) of dimension 3, Abelian subvariety of dimension 2 of J0(33)) sage: psi = pi.factor_out_component_group() sage: psi.kernel() (Finite subgroup with invariants [] over QQbar of Abelian variety J0(33) of dimension 3, Abelian subvariety of dimension 2 of J0(33))
ALGORITHM: We compute a subgroup \(G\) of \(B\) so that the composition \(h: A\to B \to B/G\) has kernel that contains \(A[n]\) and component group isomorphic to \((\ZZ/n\ZZ)^{2d}\), where \(d\) is the dimension of \(A\). Then \(h\) factors through multiplication by \(n\), so there is a morphism \(g: A\to B/G\) such that \(g \circ [n] = h\). Then \(g\) is the desired morphism. We give more details below about how to transform this into linear algebra.
- image()¶
Return the image of this morphism.
OUTPUT: an abelian variety
EXAMPLES: We compute the image of projection onto a factor of \(J_0(33)\):
sage: A,B,C = J0(33) sage: A Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33) sage: f = J0(33).projection(A) sage: f.image() Abelian subvariety of dimension 1 of J0(33) sage: f.image() == A True
We compute the image of a Hecke operator:
sage: t2 = J0(33).hecke_operator(2); t2.fcp() (x - 1) * (x + 2)^2 sage: phi = t2 + 2 sage: phi.image() Abelian subvariety of dimension 1 of J0(33)
The sum of the image and the kernel is the whole space:
sage: phi.kernel()[1] + phi.image() == J0(33) True
- is_isogeny()¶
Return True if this morphism is an isogeny of abelian varieties.
EXAMPLES:
sage: J = J0(39) sage: Id = J.hecke_operator(1) sage: Id.is_isogeny() True sage: J.hecke_operator(19).is_isogeny() False
- kernel()¶
Return the kernel of this morphism.
OUTPUT:
G
- a finite groupA
- an abelian variety (identity component of the kernel)
EXAMPLES: We compute the kernel of a projection map. Notice that the kernel has a nontrivial abelian variety part.
sage: A, B, C = J0(33) sage: pi = J0(33).projection(B) sage: pi.kernel() (Finite subgroup with invariants [20] over QQbar of Abelian variety J0(33) of dimension 3, Abelian subvariety of dimension 2 of J0(33))
We compute the kernels of some Hecke operators:
sage: t2 = J0(33).hecke_operator(2) sage: t2 Hecke operator T_2 on Abelian variety J0(33) of dimension 3 sage: t2.kernel() (Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian variety J0(33) of dimension 3, Abelian subvariety of dimension 0 of J0(33)) sage: t3 = J0(33).hecke_operator(3) sage: t3.kernel() (Finite subgroup with invariants [3, 3] over QQ of Abelian variety J0(33) of dimension 3, Abelian subvariety of dimension 0 of J0(33))