Structure maps for number fields¶
Provides isomorphisms between relative and absolute presentations, to and from vector spaces, name changing maps, etc.
EXAMPLES:
sage: L.<cuberoot2, zeta3> = CyclotomicField(3).extension(x^3 - 2)
sage: K = L.absolute_field('a')
sage: from_K, to_K = K.structure()
sage: from_K
Isomorphism map:
From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1
To: Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
sage: to_K
Isomorphism map:
From: Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
To: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1
- class sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField(A, R)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
See
MapRelativeToAbsoluteNumberField
for examples.
- class sage.rings.number_field.maps.MapNumberFieldToVectorSpace(K, V)¶
Bases:
sage.categories.map.Map
A class for the isomorphism from an absolute number field to its underlying \(\QQ\)-vector space.
EXAMPLES:
sage: L.<a> = NumberField(x^3 - x + 1) sage: V, fr, to = L.vector_space() sage: type(to) <class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>
- class sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace(K, V)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
EXAMPLES:
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23]) sage: V, fr, to = K.relative_vector_space() sage: type(to) <class 'sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace'>
- class sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace(L, V, to_K, to_V)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
The isomorphism from a relative number field to its underlying \(\QQ\)-vector space. Compare
MapRelativeNumberFieldToRelativeVectorSpace
.EXAMPLES:
sage: K.<a> = NumberField(x^8 + 100*x^6 + x^2 + 5) sage: L = K.relativize(K.subfields(4)[0][1], 'b'); L Number Field in b with defining polynomial x^2 + a0 over its base field sage: L_to_K, K_to_L = L.structure() sage: V, fr, to = L.absolute_vector_space() sage: V Vector space of dimension 8 over Rational Field sage: fr Isomorphism map: From: Vector space of dimension 8 over Rational Field To: Number Field in b with defining polynomial x^2 + a0 over its base field sage: to Isomorphism map: From: Number Field in b with defining polynomial x^2 + a0 over its base field To: Vector space of dimension 8 over Rational Field sage: type(fr), type(to) (<class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>, <class 'sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace'>) sage: v = V([1, 1, 1, 1, 0, 1, 1, 1]) sage: fr(v), to(fr(v)) == v ((-a0^3 + a0^2 - a0 + 1)*b - a0^3 - a0 + 1, True) sage: to(L.gen()), fr(to(L.gen())) == L.gen() ((0, 1, 0, 0, 0, 0, 0, 0), True)
- class sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField(R, A)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
EXAMPLES:
sage: K.<a> = NumberField(x^6 + 4*x^2 + 200) sage: L = K.relativize(K.subfields(3)[0][1], 'b'); L Number Field in b with defining polynomial x^2 + a0 over its base field sage: fr, to = L.structure() sage: fr Relative number field morphism: From: Number Field in b with defining polynomial x^2 + a0 over its base field To: Number Field in a with defining polynomial x^6 + 4*x^2 + 200 Defn: b |--> a a0 |--> -a^2 sage: to Ring morphism: From: Number Field in a with defining polynomial x^6 + 4*x^2 + 200 To: Number Field in b with defining polynomial x^2 + a0 over its base field Defn: a |--> b sage: type(fr), type(to) (<class 'sage.rings.number_field.homset.RelativeNumberFieldHomset_with_category.element_class'>, <class 'sage.rings.number_field.homset.NumberFieldHomset_with_category.element_class'>) sage: M.<c> = L.absolute_field(); M Number Field in c with defining polynomial x^6 + 4*x^2 + 200 sage: fr, to = M.structure() sage: fr Isomorphism map: From: Number Field in c with defining polynomial x^6 + 4*x^2 + 200 To: Number Field in b with defining polynomial x^2 + a0 over its base field sage: to Isomorphism map: From: Number Field in b with defining polynomial x^2 + a0 over its base field To: Number Field in c with defining polynomial x^6 + 4*x^2 + 200 sage: type(fr), type(to) (<class 'sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField'>, <class 'sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField'>) sage: fr(M.gen()), to(fr(M.gen())) == M.gen() (b, True) sage: to(L.gen()), fr(to(L.gen())) == L.gen() (c, True) sage: (to * fr)(M.gen()) == M.gen(), (fr * to)(L.gen()) == L.gen() (True, True)
- class sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField(V, K)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
EXAMPLES:
sage: L.<b> = NumberField(x^4 + 3*x^2 + 1) sage: K = L.relativize(L.subfields(2)[0][1], 'a'); K Number Field in a with defining polynomial x^2 - b0*x + 1 over its base field sage: V, fr, to = K.relative_vector_space() sage: V Vector space of dimension 2 over Number Field in b0 with defining polynomial x^2 + 1 sage: fr Isomorphism map: From: Vector space of dimension 2 over Number Field in b0 with defining polynomial x^2 + 1 To: Number Field in a with defining polynomial x^2 - b0*x + 1 over its base field sage: type(fr) <class 'sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField'> sage: a0 = K.gen(); b0 = K.base_field().gen() sage: fr(to(a0 + 2*b0)), fr(V([0, 1])), fr(V([b0, 2*b0])) (a + 2*b0, a, 2*b0*a + b0) sage: (fr * to)(K.gen()) == K.gen() True sage: (to * fr)(V([1, 2])) == V([1, 2]) True
- class sage.rings.number_field.maps.MapVectorSpaceToNumberField(V, K)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
The map to an absolute number field from its underlying \(\QQ\)-vector space.
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 3*x + 1) sage: V, fr, to = K.vector_space() sage: V Vector space of dimension 4 over Rational Field sage: fr Isomorphism map: From: Vector space of dimension 4 over Rational Field To: Number Field in a with defining polynomial x^4 + 3*x + 1 sage: to Isomorphism map: From: Number Field in a with defining polynomial x^4 + 3*x + 1 To: Vector space of dimension 4 over Rational Field sage: type(fr), type(to) (<class 'sage.rings.number_field.maps.MapVectorSpaceToNumberField'>, <class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>) sage: fr.is_injective(), fr.is_surjective() (True, True) sage: fr.domain(), to.codomain() (Vector space of dimension 4 over Rational Field, Vector space of dimension 4 over Rational Field) sage: to.domain(), fr.codomain() (Number Field in a with defining polynomial x^4 + 3*x + 1, Number Field in a with defining polynomial x^4 + 3*x + 1) sage: fr * to Composite map: From: Number Field in a with defining polynomial x^4 + 3*x + 1 To: Number Field in a with defining polynomial x^4 + 3*x + 1 Defn: Isomorphism map: From: Number Field in a with defining polynomial x^4 + 3*x + 1 To: Vector space of dimension 4 over Rational Field then Isomorphism map: From: Vector space of dimension 4 over Rational Field To: Number Field in a with defining polynomial x^4 + 3*x + 1 sage: to * fr Composite map: From: Vector space of dimension 4 over Rational Field To: Vector space of dimension 4 over Rational Field Defn: Isomorphism map: From: Vector space of dimension 4 over Rational Field To: Number Field in a with defining polynomial x^4 + 3*x + 1 then Isomorphism map: From: Number Field in a with defining polynomial x^4 + 3*x + 1 To: Vector space of dimension 4 over Rational Field sage: to(a), to(a + 1) ((0, 1, 0, 0), (1, 1, 0, 0)) sage: fr(to(a)), fr(V([0, 1, 2, 3])) (a, 3*a^3 + 2*a^2 + a)
- class sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField(V, L, from_V, from_K)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
The isomorphism to a relative number field from its underlying \(\QQ\)-vector space. Compare
MapRelativeVectorSpaceToRelativeNumberField
.EXAMPLES:
sage: L.<a, b> = NumberField([x^2 + 3, x^2 + 5]) sage: V, fr, to = L.absolute_vector_space() sage: type(fr) <class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>
- class sage.rings.number_field.maps.NameChangeMap(K, L)¶
Bases:
sage.rings.number_field.maps.NumberFieldIsomorphism
A map between two isomorphic number fields with the same defining polynomial but different variable names.
EXAMPLES:
sage: K.<a> = NumberField(x^2 - 3) sage: L.<b> = K.change_names() sage: from_L, to_L = L.structure() sage: from_L Isomorphism given by variable name change map: From: Number Field in b with defining polynomial x^2 - 3 To: Number Field in a with defining polynomial x^2 - 3 sage: to_L Isomorphism given by variable name change map: From: Number Field in a with defining polynomial x^2 - 3 To: Number Field in b with defining polynomial x^2 - 3 sage: type(from_L), type(to_L) (<class 'sage.rings.number_field.maps.NameChangeMap'>, <class 'sage.rings.number_field.maps.NameChangeMap'>)
- class sage.rings.number_field.maps.NumberFieldIsomorphism¶
Bases:
sage.categories.map.Map
A base class for various isomorphisms between number fields and vector spaces.
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 3*x + 1) sage: V, fr, to = K.vector_space() sage: isinstance(fr, sage.rings.number_field.maps.NumberFieldIsomorphism) True
- is_injective()¶
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 3*x + 1) sage: V, fr, to = K.vector_space() sage: fr.is_injective() True
- is_surjective()¶
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 3*x + 1) sage: V, fr, to = K.vector_space() sage: fr.is_surjective() True