Field of Algebraic Numbers¶
AUTHOR:
Carl Witty (2007-01-27): initial version
Carl Witty (2007-10-29): massive rewrite to support complex as well as real numbers
This is an implementation of the algebraic numbers (the complex
numbers which are the zero of a polynomial in \(\ZZ[x]\); in other
words, the algebraic closure of \(\QQ\), with an embedding into \(\CC\)).
All computations are exact. We also include an implementation of the
algebraic reals (the intersection of the algebraic numbers with
\(\RR\)). The field of algebraic numbers \(\QQbar\) is available with
abbreviation QQbar
; the field of algebraic reals has abbreviation
AA
.
As with many other implementations of the algebraic numbers, we try hard to avoid computing a number field and working in the number field; instead, we use floating-point interval arithmetic whenever possible (basically whenever we need to prove non-equalities), and resort to symbolic computation only as needed (basically to prove equalities).
Algebraic numbers exist in one of the following forms:
a rational number
the sum, difference, product, or quotient of algebraic numbers
the negation, inverse, absolute value, norm, real part, imaginary part, or complex conjugate of an algebraic number
a particular root of a polynomial, given as a polynomial with algebraic coefficients together with an isolating interval (given as a
RealIntervalFieldElement
) which encloses exactly one root, and the multiplicity of the roota polynomial in one generator, where the generator is an algebraic number given as the root of an irreducible polynomial with integral coefficients and the polynomial is given as a
NumberFieldElement
.
An algebraic number can be coerced into ComplexIntervalField
(or
RealIntervalField
, for algebraic reals); every algebraic number has a
cached interval of the highest precision yet calculated.
In most cases, computations that need to compare two algebraic numbers compute them with 128-bit precision intervals; if this does not suffice to prove that the numbers are different, then we fall back on exact computation.
Note that division involves an implicit comparison of the divisor against zero, and may thus trigger exact computation.
Also, using an algebraic number in the leading coefficient of a polynomial also involves an implicit comparison against zero, which again may trigger exact computation.
Note that we work fairly hard to avoid computing new number fields; to help, we keep a lattice of already-computed number fields and their inclusions.
EXAMPLES:
sage: sqrt(AA(2)) > 0
True
sage: (sqrt(5 + 2*sqrt(QQbar(6))) - sqrt(QQbar(3)))^2 == 2
True
sage: AA((sqrt(5 + 2*sqrt(6)) - sqrt(3))^2) == 2
True
For a monic cubic polynomial \(x^3 + bx^2 + cx + d\) with roots \(s1\), \(s2\), \(s3\), the discriminant is defined as \((s1-s2)^2(s1-s3)^2(s2-s3)^2\) and can be computed as \(b^2c^2 - 4b^3d - 4c^3 + 18bcd - 27d^2\). We can test that these definitions do give the same result:
sage: def disc1(b, c, d):
....: return b^2*c^2 - 4*b^3*d - 4*c^3 + 18*b*c*d - 27*d^2
sage: def disc2(s1, s2, s3):
....: return ((s1-s2)*(s1-s3)*(s2-s3))^2
sage: x = polygen(AA)
sage: p = x*(x-2)*(x-4)
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))
sage: s2 = AA.polynomial_root(cp, RIF(1, 3))
sage: s3 = AA.polynomial_root(cp, RIF(3, 5))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
sage: p = p + 1
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))
sage: s2 = AA.polynomial_root(cp, RIF(1, 3))
sage: s3 = AA.polynomial_root(cp, RIF(3, 5))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
sage: p = (x-sqrt(AA(2)))*(x-AA(2).nth_root(3))*(x-sqrt(AA(3)))
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(1.4, 1.5))
sage: s2 = AA.polynomial_root(cp, RIF(1.7, 1.8))
sage: s3 = AA.polynomial_root(cp, RIF(1.2, 1.3))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
We can convert from symbolic expressions:
sage: QQbar(sqrt(-5))
2.236067977499790?*I
sage: AA(sqrt(2) + sqrt(3))
3.146264369941973?
sage: QQbar(I)
I
sage: QQbar(I * golden_ratio)
1.618033988749895?*I
sage: AA(golden_ratio)^2 - AA(golden_ratio)
1
sage: QQbar((-8)^(1/3))
1.000000000000000? + 1.732050807568878?*I
sage: AA((-8)^(1/3))
-2
sage: QQbar((-4)^(1/4))
1 + 1*I
sage: AA((-4)^(1/4))
Traceback (most recent call last):
...
ValueError: Cannot coerce algebraic number with non-zero imaginary part to algebraic real
The coercion, however, goes in the other direction, since not all symbolic expressions are algebraic numbers:
sage: QQbar(sqrt(2)) + sqrt(3)
sqrt(3) + 1.414213562373095?
sage: QQbar(sqrt(2) + QQbar(sqrt(3)))
3.146264369941973?
Note the different behavior in taking roots: for AA
we prefer real
roots if they exist, but for QQbar
we take the principal root:
sage: AA(-1)^(1/3)
-1
sage: QQbar(-1)^(1/3)
0.500000000000000? + 0.866025403784439?*I
However, implicit coercion from \(\QQ[I]\) is only allowed when it is equipped with a complex embedding:
sage: i.parent()
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: QQbar(1) + i
I + 1
sage: K.<im> = QuadraticField(-1, embedding=None)
sage: QQbar(1) + im
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Algebraic Field' and
'Number Field in im with defining polynomial x^2 + 1'
However, we can explicitly coerce from the abstract number field \(\QQ[I]\). (Technically, this is not quite kosher, since we do not know whether the field generator is supposed to map to \(+I\) or \(-I\). We assume that for any quadratic field with polynomial \(x^2+1\), the generator maps to \(+I\).):
sage: pythag = QQbar(3/5 + 4*im/5); pythag
4/5*I + 3/5
sage: pythag.abs() == 1
True
We can implicitly coerce from algebraic reals to algebraic numbers:
sage: a = QQbar(1); a, a.parent()
(1, Algebraic Field)
sage: b = AA(1); b, b.parent()
(1, Algebraic Real Field)
sage: c = a + b; c, c.parent()
(2, Algebraic Field)
Some computation with radicals:
sage: phi = (1 + sqrt(AA(5))) / 2
sage: phi^2 == phi + 1
True
sage: tau = (1 - sqrt(AA(5))) / 2
sage: tau^2 == tau + 1
True
sage: phi + tau == 1
True
sage: tau < 0
True
sage: rt23 = sqrt(AA(2/3))
sage: rt35 = sqrt(AA(3/5))
sage: rt25 = sqrt(AA(2/5))
sage: rt23 * rt35 == rt25
True
The Sage rings AA
and QQbar
can decide equalities between radical
expressions (over the reals and complex numbers respectively):
sage: a = AA((2/(3*sqrt(3)) + 10/27)^(1/3) - 2/(9*(2/(3*sqrt(3)) + 10/27)^(1/3)) + 1/3)
sage: a
1.000000000000000?
sage: a == 1
True
Algebraic numbers which are known to be rational print as rationals; otherwise they print as intervals (with 53-bit precision):
sage: AA(2)/3
2/3
sage: QQbar(5/7)
5/7
sage: QQbar(1/3 - 1/4*I)
-1/4*I + 1/3
sage: two = QQbar(4).nth_root(4)^2; two
2.000000000000000?
sage: two == 2; two
True
2
sage: phi
1.618033988749895?
We can find the real and imaginary parts of an algebraic number (exactly):
sage: r = QQbar.polynomial_root(x^5 - x - 1, CIF(RIF(0.1, 0.2), RIF(1.0, 1.1))); r
0.1812324444698754? + 1.083954101317711?*I
sage: r.real()
0.1812324444698754?
sage: r.imag()
1.083954101317711?
sage: r.minpoly()
x^5 - x - 1
sage: r.real().minpoly()
x^10 + 3/16*x^6 + 11/32*x^5 - 1/64*x^2 + 1/128*x - 1/1024
sage: r.imag().minpoly() # long time (10s on sage.math, 2013)
x^20 - 5/8*x^16 - 95/256*x^12 - 625/1024*x^10 - 5/512*x^8 - 1875/8192*x^6 + 25/4096*x^4 - 625/32768*x^2 + 2869/1048576
We can find the absolute value and norm of an algebraic number exactly.
(Note that we define the norm as the product of a number and its
complex conjugate; this is the algebraic definition of norm, if we
view QQbar
as AA[I]
.):
sage: R.<x> = QQ[]
sage: r = (x^3 + 8).roots(QQbar, multiplicities=False)[2]; r
1.000000000000000? + 1.732050807568878?*I
sage: r.abs() == 2
True
sage: r.norm() == 4
True
sage: (r+QQbar(I)).norm().minpoly()
x^2 - 10*x + 13
sage: r = AA.polynomial_root(x^2 - x - 1, RIF(-1, 0)); r
-0.618033988749895?
sage: r.abs().minpoly()
x^2 + x - 1
We can compute the multiplicative order of an algebraic number:
sage: QQbar(-1/2 + I*sqrt(3)/2).multiplicative_order()
3
sage: QQbar(-sqrt(3)/2 + I/2).multiplicative_order()
12
sage: (QQbar.zeta(23)**5).multiplicative_order()
23
The paper “ARPREC: An Arbitrary Precision Computation Package” by Bailey, Yozo, Li and Thompson discusses this result. Evidently it is difficult to find, but we can easily verify it.
sage: alpha = QQbar.polynomial_root(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1, RIF(1, 1.2))
sage: lhs = alpha^630 - 1
sage: rhs_num = (alpha^315 - 1) * (alpha^210 - 1) * (alpha^126 - 1)^2 * (alpha^90 - 1) * (alpha^3 - 1)^3 * (alpha^2 - 1)^5 * (alpha - 1)^3
sage: rhs_den = (alpha^35 - 1) * (alpha^15 - 1)^2 * (alpha^14 - 1)^2 * (alpha^5 - 1)^6 * alpha^68
sage: rhs = rhs_num / rhs_den
sage: lhs
2.642040335819351?e44
sage: rhs
2.642040335819351?e44
sage: lhs - rhs
0.?e29
sage: lhs == rhs
True
sage: lhs - rhs
0
sage: lhs._exact_value()
-10648699402510886229334132989629606002223831*a^9 + 23174560249100286133718183712802529035435800*a^8 - 27259790692625442252605558473646959458901265*a^7 + 21416469499004652376912957054411004410158065*a^6 - 14543082864016871805545108986578337637140321*a^5 + 6458050008796664339372667222902512216589785*a^4 + 3052219053800078449122081871454923124998263*a^3 - 14238966128623353681821644902045640915516176*a^2 + 16749022728952328254673732618939204392161001*a - 9052854758155114957837247156588012516273410 where a^10 - a^9 + a^7 - a^6 + a^5 - a^4 + a^3 - a + 1 = 0 and a in -1.176280818259918?
Given an algebraic number, we can produce a string that will reproduce that algebraic number if you type the string into Sage. We can see that until exact computation is triggered, an algebraic number keeps track of the computation steps used to produce that number:
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: n = (rt2 + rt3)^5; n
308.3018001722975?
sage: sage_input(n)
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v2*v2*v1
But once exact computation is triggered, the computation tree is discarded, and we get a way to produce the number directly:
sage: n == 109*rt2 + 89*rt3
True
sage: sage_input(n)
R.<y> = QQ[]
v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
-109*v^3 - 89*v^2 + 327*v + 178
We can also see that some computations (basically, those which are easy to perform exactly) are performed directly, instead of storing the computation tree:
sage: z3_3 = QQbar.zeta(3) * 3
sage: z4_4 = QQbar.zeta(4) * 4
sage: z5_5 = QQbar.zeta(5) * 5
sage: sage_input(z3_3 * z4_4 * z5_5)
R.<y> = QQ[]
3*QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(-RR(0.50000000000000011), -RR(0.49999999999999994)), RIF(RR(0.8660254037844386), RR(0.86602540378443871))))*QQbar(4*I)*(5*QQbar.polynomial_root(AA.common_polynomial(y^4 + y^3 + y^2 + y + 1), CIF(RIF(RR(0.3090169943749474), RR(0.30901699437494745)), RIF(RR(0.95105651629515353), RR(0.95105651629515364)))))
Note that the verify=True
argument to sage_input
will always trigger
exact computation, so running sage_input
twice in a row on the same number
will actually give different answers. In the following, running sage_input
on n
will also trigger exact computation on rt2
, as you can see by the
fact that the third output is different than the first:
sage: rt2 = AA(sqrt(2))
sage: n = rt2^2
sage: sage_input(n, verify=True)
# Verified
R.<x> = AA[]
v = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
v*v
sage: sage_input(n, verify=True)
# Verified
AA(2)
sage: n = rt2^2
sage: sage_input(n, verify=True)
# Verified
AA(2)
Just for fun, let’s try sage_input
on a very complicated expression. The
output of this example changed with the rewriting of polynomial multiplication
algorithms in trac ticket #10255:
sage: rt2 = sqrt(AA(2))
sage: rt3 = sqrt(QQbar(3))
sage: x = polygen(QQbar)
sage: nrt3 = AA.polynomial_root((x-rt2)*(x+rt3), RIF(-2, -1))
sage: one = AA.polynomial_root((x-rt2)*(x-rt3)*(x-nrt3)*(x-1-rt3-nrt3), RIF(0.9, 1.1))
sage: one
1.000000000000000?
sage: sage_input(one, verify=True)
# Verified
R1.<x> = QQbar[]
R2.<y> = QQ[]
v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
AA.polynomial_root(AA.common_polynomial(x^4 + QQbar(v^3 - 3*v - 1)*x^3 + QQbar(-v^3 + 3*v - 3)*x^2 + QQbar(-3*v^3 + 9*v + 3)*x + QQbar(3*v^3 - 9*v)), RIF(RR(0.99999999999999989), RR(1.0000000000000002)))
sage: one
1
We can pickle and unpickle algebraic fields (and they are globally unique):
sage: loads(dumps(AlgebraicField())) is AlgebraicField()
True
sage: loads(dumps(AlgebraicRealField())) is AlgebraicRealField()
True
We can pickle and unpickle algebraic numbers:
sage: loads(dumps(QQbar(10))) == QQbar(10)
True
sage: loads(dumps(QQbar(5/2))) == QQbar(5/2)
True
sage: loads(dumps(QQbar.zeta(5))) == QQbar.zeta(5)
True
sage: t = QQbar(sqrt(2)); type(t._descr)
<class 'sage.rings.qqbar.ANRoot'>
sage: loads(dumps(t)) == QQbar(sqrt(2))
True
sage: t.exactify(); type(t._descr)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: loads(dumps(t)) == QQbar(sqrt(2))
True
sage: t = ~QQbar(sqrt(2)); type(t._descr)
<class 'sage.rings.qqbar.ANUnaryExpr'>
sage: loads(dumps(t)) == 1/QQbar(sqrt(2))
True
sage: t = QQbar(sqrt(2)) + QQbar(sqrt(3)); type(t._descr)
<class 'sage.rings.qqbar.ANBinaryExpr'>
sage: loads(dumps(t)) == QQbar(sqrt(2)) + QQbar(sqrt(3))
True
We can convert elements of QQbar
and AA
into the following
types: float
, complex
, RDF
, CDF
, RR
, CC
,
RIF
, CIF
, ZZ
, and QQ
, with a few exceptions. (For the
arbitrary-precision types, RR
, CC
, RIF
, and CIF
, it
can convert into a field of arbitrary precision.)
Converting from QQbar
to a real type (float
, RDF
, RR
,
RIF
, ZZ
, or QQ
) succeeds only if the QQbar
is actually
real (has an imaginary component of exactly zero). Converting from
either AA
or QQbar
to ZZ
or QQ
succeeds only if the
number actually is an integer or rational. If conversion fails, a
ValueError will be raised.
Here are examples of all of these conversions:
sage: all_vals = [AA(42), AA(22/7), AA(golden_ratio), QQbar(-13), QQbar(89/55), QQbar(-sqrt(7)), QQbar.zeta(5)]
sage: def convert_test_all(ty):
....: def convert_test(v):
....: try:
....: return ty(v)
....: except (TypeError, ValueError):
....: return None
....: return [convert_test(_) for _ in all_vals]
sage: convert_test_all(float)
[42.0, 3.1428571428571432, 1.618033988749895, -13.0, 1.6181818181818182, -2.6457513110645907, None]
sage: convert_test_all(complex)
[(42+0j), (3.1428571428571432+0j), (1.618033988749895+0j), (-13+0j), (1.6181818181818182+0j), (-2.6457513110645907+0j), (0.30901699437494745+0.9510565162951536j)]
sage: convert_test_all(RDF)
[42.0, 3.1428571428571432, 1.618033988749895, -13.0, 1.6181818181818182, -2.6457513110645907, None]
sage: convert_test_all(CDF)
[42.0, 3.1428571428571432, 1.618033988749895, -13.0, 1.6181818181818182, -2.6457513110645907, 0.30901699437494745 + 0.9510565162951536*I]
sage: convert_test_all(RR)
[42.0000000000000, 3.14285714285714, 1.61803398874989, -13.0000000000000, 1.61818181818182, -2.64575131106459, None]
sage: convert_test_all(CC)
[42.0000000000000, 3.14285714285714, 1.61803398874989, -13.0000000000000, 1.61818181818182, -2.64575131106459, 0.309016994374947 + 0.951056516295154*I]
sage: convert_test_all(RIF)
[42, 3.142857142857143?, 1.618033988749895?, -13, 1.618181818181819?, -2.645751311064591?, None]
sage: convert_test_all(CIF)
[42, 3.142857142857143?, 1.618033988749895?, -13, 1.618181818181819?, -2.645751311064591?, 0.3090169943749474? + 0.9510565162951536?*I]
sage: convert_test_all(ZZ)
[42, None, None, -13, None, None, None]
sage: convert_test_all(QQ)
[42, 22/7, None, -13, 89/55, None, None]
Compute the exact coordinates of a 34-gon (the formulas used are from Weisstein, Eric W. “Trigonometry Angles–Pi/17.” and can be found at http://mathworld.wolfram.com/TrigonometryAnglesPi17.html):
sage: rt17 = AA(17).sqrt()
sage: rt2 = AA(2).sqrt()
sage: eps = (17 + rt17).sqrt()
sage: epss = (17 - rt17).sqrt()
sage: delta = rt17 - 1
sage: alpha = (34 + 6*rt17 + rt2*delta*epss - 8*rt2*eps).sqrt()
sage: beta = 2*(17 + 3*rt17 - 2*rt2*eps - rt2*epss).sqrt()
sage: x = rt2*(15 + rt17 + rt2*(alpha + epss)).sqrt()/8
sage: y = rt2*(epss**2 - rt2*(alpha + epss)).sqrt()/8
sage: cx, cy = 1, 0
sage: for i in range(34):
....: cx, cy = x*cx-y*cy, x*cy+y*cx
sage: cx
1.000000000000000?
sage: cy
0.?e-15
sage: ax = polygen(AA)
sage: x2 = AA.polynomial_root(256*ax**8 - 128*ax**7 - 448*ax**6 + 192*ax**5 + 240*ax**4 - 80*ax**3 - 40*ax**2 + 8*ax + 1, RIF(0.9829, 0.983))
sage: y2 = (1-x2**2).sqrt()
sage: x - x2
0.?e-18
sage: y - y2
0.?e-17
Ideally, in the above example we should be able to test x == x2
and y ==
y2
but this is currently infinitely long.
- sage.rings.qqbar.AA = Algebraic Real Field¶
- class sage.rings.qqbar.ANBinaryExpr(left, right, op)¶
Bases:
sage.rings.qqbar.ANDescr
Initialize this ANBinaryExpr.
EXAMPLES:
sage: t = QQbar(sqrt(2)) + QQbar(sqrt(3)); type(t._descr) # indirect doctest <class 'sage.rings.qqbar.ANBinaryExpr'>
- exactify()¶
- handle_sage_input(sib, coerce, is_qqbar)¶
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for
ANBinaryExpr
).EXAMPLES:
sage: sage_input(2 + sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] 2 + AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(sqrt(AA(2)) + 2, verify=True) # Verified R.<x> = AA[] AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + 2 sage: sage_input(2 - sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] 2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(2 / sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] 2/AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(2 + (-1*sqrt(AA(2))), verify=True) # Verified R.<x> = AA[] 2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(2*sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] 2*AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: rt2 = sqrt(AA(2)) sage: one = rt2/rt2 sage: n = one+3 sage: sage_input(n) R.<x> = AA[] v = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) v/v + 3 sage: one == 1 True sage: sage_input(n) 1 + AA(3) sage: rt3 = QQbar(sqrt(3)) sage: one = rt3/rt3 sage: n = sqrt(AA(2))+one sage: one == 1 True sage: sage_input(n) R.<x> = AA[] QQbar.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + 1 sage: from sage.rings.qqbar import * sage: from sage.misc.sage_input import SageInputBuilder sage: sib = SageInputBuilder() sage: binexp = ANBinaryExpr(AA(3), AA(5), operator.mul) sage: binexp.handle_sage_input(sib, False, False) ({binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}}, True) sage: binexp.handle_sage_input(sib, False, True) ({call: {atomic:QQbar}({binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}})}, True)
- is_complex()¶
Whether this element is complex. Does not trigger exact computation, so may return True even if the element is real.
EXAMPLES:
sage: x = (QQbar(sqrt(-2)) / QQbar(sqrt(-5)))._descr sage: x.is_complex() True
- class sage.rings.qqbar.ANDescr¶
Bases:
sage.structure.sage_object.SageObject
An
AlgebraicNumber
orAlgebraicReal
is a wrapper around anANDescr
object.ANDescr
is an abstract base class, which should never be directly instantiated; its concrete subclasses areANRational
,ANBinaryExpr
,ANUnaryExpr
,ANRoot
, andANExtensionElement
.ANDescr
and all of its subclasses are for internal use, and should not be used directly.- abs(n)¶
Absolute value of self.
EXAMPLES:
sage: a = QQbar(sqrt(2)) sage: b = a._descr sage: b.abs(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- conjugate(n)¶
Complex conjugate of self.
EXAMPLES:
sage: a = QQbar(sqrt(-7)) sage: b = a._descr sage: b.conjugate(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- imag(n)¶
Imaginary part of self.
EXAMPLES:
sage: a = QQbar(sqrt(-7)) sage: b = a._descr sage: b.imag(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- invert(n)¶
1/self.
EXAMPLES:
sage: a = QQbar(sqrt(2)) sage: b = a._descr sage: b.invert(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- is_simple()¶
Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.
This returns
True
if self is anANRational
, or a minimalANExtensionElement
.EXAMPLES:
sage: from sage.rings.qqbar import ANRational sage: ANRational(1/2).is_simple() True sage: rt2 = AA(sqrt(2)) sage: rt3 = AA(sqrt(3)) sage: rt2b = rt3 + rt2 - rt3 sage: rt2.exactify() sage: rt2._descr.is_simple() True sage: rt2b.exactify() sage: rt2b._descr.is_simple() False sage: rt2b.simplify() sage: rt2b._descr.is_simple() True
- neg(n)¶
Negation of self.
EXAMPLES:
sage: a = QQbar(sqrt(2)) sage: b = a._descr sage: b.neg(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- norm(n)¶
Field norm of self from \(\overline{\QQ}\) to its real subfield \(\mathbf{A}\), i.e.~the square of the usual complex absolute value.
EXAMPLES:
sage: a = QQbar(sqrt(-7)) sage: b = a._descr sage: b.norm(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- real(n)¶
Real part of self.
EXAMPLES:
sage: a = QQbar(sqrt(-7)) sage: b = a._descr sage: b.real(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- class sage.rings.qqbar.ANExtensionElement(generator, value)¶
Bases:
sage.rings.qqbar.ANDescr
The subclass of
ANDescr
that represents a number field element in terms of a specific generator. Consists of a polynomial with rational coefficients in terms of the generator, and the generator itself, anAlgebraicGenerator
.- abs(n)¶
Return the absolute value of self (square root of the norm).
EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.abs(a) Root 3.146264369941972342? of x^2 - 9.89897948556636?
- conjugate(n)¶
Negation of self.
EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.conjugate(a) -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? + 1.573132184970987?*I sage: b.conjugate("ham spam and eggs") -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? + 1.573132184970987?*I
- exactify()¶
Return an exact representation of
self
.Since
self
is already exact, just returnself
.EXAMPLES:
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.exactify() sage: type(v) <class 'sage.rings.qqbar.ANExtensionElement'> sage: v.exactify() is v True
- field_element_value()¶
Return the underlying number field element.
EXAMPLES:
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.exactify() sage: v.field_element_value() a
- generator()¶
Return the
AlgebraicGenerator
object corresponding to self.EXAMPLES:
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.exactify() sage: v.generator() Number Field in a with defining polynomial y^2 - y - 1 with a in 1.618033988749895?
- handle_sage_input(sib, coerce, is_qqbar)¶
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True, for
ANExtensionElement
).EXAMPLES:
sage: I = QQbar(I) sage: sage_input(3+4*I, verify=True) # Verified QQbar(3 + 4*I) sage: v = QQbar.zeta(3) + QQbar.zeta(5) sage: v - v == 0 True sage: sage_input(vector(QQbar, (4-3*I, QQbar.zeta(7))), verify=True) # Verified R.<y> = QQ[] vector(QQbar, [4 - 3*I, QQbar.polynomial_root(AA.common_polynomial(y^6 + y^5 + y^4 + y^3 + y^2 + y + 1), CIF(RIF(RR(0.62348980185873348), RR(0.62348980185873359)), RIF(RR(0.7818314824680298), RR(0.78183148246802991))))]) sage: sage_input(v, verify=True) # Verified R.<y> = QQ[] v = QQbar.polynomial_root(AA.common_polynomial(y^8 - y^7 + y^5 - y^4 + y^3 - y + 1), CIF(RIF(RR(0.91354545764260087), RR(0.91354545764260098)), RIF(RR(0.40673664307580015), RR(0.40673664307580021)))) v^5 + v^3 sage: v = QQbar(sqrt(AA(2))) sage: v.exactify() sage: sage_input(v, verify=True) # Verified R.<y> = QQ[] QQbar(AA.polynomial_root(AA.common_polynomial(y^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))) sage: from sage.rings.qqbar import * sage: from sage.misc.sage_input import SageInputBuilder sage: sib = SageInputBuilder() sage: extel = ANExtensionElement(QQbar_I_generator, QQbar_I_generator.field().gen() + 1) sage: extel.handle_sage_input(sib, False, True) ({call: {atomic:QQbar}({binop:+ {atomic:1} {atomic:I}})}, True)
- invert(n)¶
1/self.
EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.invert(a) 7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I sage: b.invert("ham spam and eggs") 7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
- is_complex()¶
Return True if the number field that defines this element is not real.
This does not imply that the element itself is definitely non-real, as in the example below.
EXAMPLES:
sage: rt2 = QQbar(sqrt(2)) sage: rtm3 = QQbar(sqrt(-3)) sage: x = rtm3 + rt2 - rtm3 sage: x.exactify() sage: y = x._descr sage: type(y) <class 'sage.rings.qqbar.ANExtensionElement'> sage: y.is_complex() True sage: x.imag() == 0 True
- is_simple()¶
Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.
For
ANExtensionElement
elements, we check this by comparing the degree of the minimal polynomial to the degree of the field.EXAMPLES:
sage: rt2 = AA(sqrt(2)) sage: rt3 = AA(sqrt(3)) sage: rt2b = rt3 + rt2 - rt3 sage: rt2.exactify() sage: rt2._descr a where a^2 - 2 = 0 and a in 1.414213562373095? sage: rt2._descr.is_simple() True sage: rt2b.exactify() sage: rt2b._descr a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137? sage: rt2b._descr.is_simple() False
- minpoly()¶
Compute the minimal polynomial of this algebraic number.
EXAMPLES:
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.exactify() sage: type(v) <class 'sage.rings.qqbar.ANExtensionElement'> sage: v.minpoly() x^2 - x - 1
- neg(n)¶
Negation of self.
EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.neg(a) 1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I sage: b.neg("ham spam and eggs") 1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
- norm(n)¶
Norm of self (square of complex absolute value)
EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.norm(a) <sage.rings.qqbar.ANUnaryExpr object at ...>
- rational_argument(n)¶
If the argument of self is \(2\pi\) times some rational number in \([1/2, -1/2)\), return that rational; otherwise, return
None
.EXAMPLES:
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(3)) sage: a.exactify() sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANExtensionElement'> sage: b.rational_argument(a) is None True sage: x = polygen(QQ) sage: a = (x^4 + 1).roots(QQbar, multiplicities=False)[0] sage: a.exactify() sage: b = a._descr sage: b.rational_argument(a) -3/8
- simplify(n)¶
Compute an exact representation for this descriptor, in the smallest possible number field.
INPUT:
n
– The element ofAA
orQQbar
corresponding to this descriptor.
EXAMPLES:
sage: rt2 = AA(sqrt(2)) sage: rt3 = AA(sqrt(3)) sage: rt2b = rt3 + rt2 - rt3 sage: rt2b.exactify() sage: rt2b._descr a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137? sage: rt2b._descr.simplify(rt2b) a where a^2 - 2 = 0 and a in 1.414213562373095?
- class sage.rings.qqbar.ANRational(x)¶
Bases:
sage.rings.qqbar.ANDescr
The subclass of
ANDescr
that represents an arbitrary rational. This class is private, and should not be used directly.- abs(n)¶
Absolute value of self.
EXAMPLES:
sage: a = QQbar(3) sage: b = a._descr sage: b.abs(a) 3
- angle()¶
Return a rational number \(q \in (-1/2, 1/2]\) such that
self
is a rational multiple of \(e^{2\pi i q}\). Always returns 0, since this element is rational.EXAMPLES:
sage: QQbar(3)._descr.angle() 0 sage: QQbar(-3)._descr.angle() 0 sage: QQbar(0)._descr.angle() 0
- exactify()¶
Calculate self exactly. Since self is a rational number, return self.
EXAMPLES:
sage: a = QQbar(1/3)._descr sage: a.exactify() is a True
- generator()¶
Return an
AlgebraicGenerator
object associated to this element. Returns the trivial generator, sinceself
is rational.EXAMPLES:
sage: QQbar(0)._descr.generator() Trivial generator
- handle_sage_input(sib, coerce, is_qqbar)¶
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always False, for rationals).
EXAMPLES:
sage: sage_input(QQbar(22/7), verify=True) # Verified QQbar(22/7) sage: sage_input(-AA(3)/5, verify=True) # Verified AA(-3/5) sage: sage_input(vector(AA, (0, 1/2, 1/3)), verify=True) # Verified vector(AA, [0, 1/2, 1/3]) sage: from sage.rings.qqbar import * sage: from sage.misc.sage_input import SageInputBuilder sage: sib = SageInputBuilder() sage: rat = ANRational(9/10) sage: rat.handle_sage_input(sib, False, True) ({call: {atomic:QQbar}({binop:/ {atomic:9} {atomic:10}})}, False)
- invert(n)¶
1/self.
EXAMPLES:
sage: a = QQbar(3) sage: b = a._descr sage: b.invert(a) 1/3
- is_complex()¶
Return False, since rational numbers are real
EXAMPLES:
sage: QQbar(1/7)._descr.is_complex() False
- is_simple()¶
Checks whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.
This is always true for rational numbers.
EXAMPLES:
sage: AA(1/2)._descr.is_simple() True
- minpoly()¶
Return the min poly of self over \(\QQ\).
EXAMPLES:
sage: QQbar(7)._descr.minpoly() x - 7
- neg(n)¶
Negation of self.
EXAMPLES:
sage: a = QQbar(3) sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANRational'> sage: b.neg(a) -3
- rational_argument(n)¶
Return the argument of self divided by \(2 \pi\), or
None
if this element is 0.EXAMPLES:
sage: QQbar(3)._descr.rational_argument(None) 0 sage: QQbar(-3)._descr.rational_argument(None) 1/2 sage: QQbar(0)._descr.rational_argument(None) is None True
- scale()¶
Return a rational number \(r\) such that
self
is equal to \(r e^{2 \pi i q}\) for some \(q \in (-1/2, 1/2]\). In other words, just return self as a rational number.EXAMPLES:
sage: QQbar(-3)._descr.scale() -3
- class sage.rings.qqbar.ANRoot(poly, interval, multiplicity=1)¶
Bases:
sage.rings.qqbar.ANDescr
The subclass of
ANDescr
that represents a particular root of a polynomial with algebraic coefficients. This class is private, and should not be used directly.- conjugate(n)¶
Complex conjugate of this ANRoot object.
EXAMPLES:
sage: a = (x^2 + 23).roots(ring=QQbar, multiplicities=False)[0] sage: b = a._descr sage: type(b) <class 'sage.rings.qqbar.ANRoot'> sage: c = b.conjugate(a); c <sage.rings.qqbar.ANUnaryExpr object at ...> sage: c.exactify() -2*a + 1 where a^2 - a + 6 = 0 and a in 0.50000000000000000? - 2.397915761656360?*I
- exactify()¶
Return either an
ANRational
or anANExtensionElement
with the same value as this number.EXAMPLES:
sage: from sage.rings.qqbar import ANRoot sage: x = polygen(QQbar) sage: two = ANRoot((x-2)*(x-sqrt(QQbar(2))), RIF(1.9, 2.1)) sage: two.exactify() 2 sage: strange = ANRoot(x^2 + sqrt(QQbar(3))*x - sqrt(QQbar(2)), RIF(-0, 1)) sage: strange.exactify() a where a^8 - 6*a^6 + 5*a^4 - 12*a^2 + 4 = 0 and a in 0.6051012265139511?
- handle_sage_input(sib, coerce, is_qqbar)¶
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True, for
ANRoot
).EXAMPLES:
sage: sage_input((AA(3)^(1/2))^(1/3), verify=True) # Verified R.<x> = AA[] AA.polynomial_root(AA.common_polynomial(x^3 - AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))), RIF(RR(1.2009369551760025), RR(1.2009369551760027)))
These two examples are too big to verify quickly. (Verification would create a field of degree 28.):
sage: sage_input((sqrt(AA(3))^(5/7))^(9/4)) R.<x> = AA[] v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774))) v2 = v1*v1 v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.4804728524798112), RR(1.4804728524798114))) v4 = v3*v3 v5 = v4*v4 AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.4176921938267877), RR(2.4176921938267881))) sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4)) R.<x> = QQbar[] v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0)), RIF(RR(2.6457513110645903), RR(2.6457513110645907)))) v2 = v1*v1 v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(RR(0.8693488875796217), RR(0.86934888757962181)), RIF(RR(1.8052215661454434), RR(1.8052215661454436)))) v4 = v3*v3 v5 = v4*v4 QQbar.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), CIF(RIF(-RR(3.8954086044650791), -RR(3.8954086044650786)), RIF(RR(2.7639398015408925), RR(2.7639398015408929)))) sage: x = polygen(QQ) sage: sage_input(AA.polynomial_root(x^2-x-1, RIF(1, 2)), verify=True) # Verified R.<y> = QQ[] AA.polynomial_root(AA.common_polynomial(y^2 - y - 1), RIF(RR(1.6180339887498947), RR(1.6180339887498949))) sage: sage_input(QQbar.polynomial_root(x^3-5, CIF(RIF(-3, 0), RIF(0, 3))), verify=True) # Verified R.<y> = QQ[] QQbar.polynomial_root(AA.common_polynomial(y^3 - 5), CIF(RIF(-RR(0.85498797333834853), -RR(0.85498797333834842)), RIF(RR(1.4808826096823642), RR(1.4808826096823644)))) sage: from sage.rings.qqbar import * sage: from sage.misc.sage_input import SageInputBuilder sage: sib = SageInputBuilder() sage: rt = ANRoot(x^3 - 2, RIF(0, 4)) sage: rt.handle_sage_input(sib, False, True) ({call: {getattr: {atomic:QQbar}.polynomial_root}({call: {getattr: {atomic:AA}.common_polynomial}({binop:- {binop:** {gen:y {constr_parent: {subscr: {atomic:QQ}[{atomic:'y'}]} with gens: ('y',)}} {atomic:3}} {atomic:2}})}, {call: {atomic:RIF}({call: {atomic:RR}({atomic:1.259921049894873})}, {call: {atomic:RR}({atomic:1.2599210498948732})})})}, True)
- is_complex()¶
Whether this is a root in \(\overline{\QQ}\) (rather than \(\mathbf{A}\)). Note that this may return True even if the root is actually real, as the second example shows; it does not trigger exact computation to see if the root is real.
EXAMPLES:
sage: x = polygen(QQ) sage: (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.is_complex() False sage: (x^2 - x - 1).roots(ring=QQbar, multiplicities=False)[1]._descr.is_complex() True
- refine_interval(interval, prec)¶
Takes an interval which is assumed to enclose exactly one root of the polynomial (or, with multiplicity=`k`, exactly one root of the \(k-1\)-st derivative); and a precision, in bits.
Tries to find a narrow interval enclosing the root using interval arithmetic of the given precision. (No particular number of resulting bits of precision is guaranteed.)
Uses a combination of Newton’s method (adapted for interval arithmetic) and bisection. The algorithm will converge very quickly if started with a sufficiently narrow interval.
EXAMPLES:
sage: from sage.rings.qqbar import ANRoot sage: x = polygen(AA) sage: rt2 = ANRoot(x^2 - 2, RIF(0, 2)) sage: rt2.refine_interval(RIF(0, 2), 75) 1.4142135623730950488017?
- class sage.rings.qqbar.ANUnaryExpr(arg, op)¶
Bases:
sage.rings.qqbar.ANDescr
Initialize this ANUnaryExpr.
EXAMPLES:
sage: t = ~QQbar(sqrt(2)); type(t._descr) # indirect doctest <class 'sage.rings.qqbar.ANUnaryExpr'>
- exactify()¶
Trigger exact computation of self.
EXAMPLES:
sage: v = (-QQbar(sqrt(2)))._descr sage: type(v) <class 'sage.rings.qqbar.ANUnaryExpr'> sage: v.exactify() -a where a^2 - 2 = 0 and a in 1.414213562373095?
- handle_sage_input(sib, coerce, is_qqbar)¶
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for
ANUnaryExpr
).EXAMPLES:
sage: sage_input(-sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] -AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(~sqrt(AA(2)), verify=True) # Verified R.<x> = AA[] ~AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) sage: sage_input(sqrt(QQbar(-3)).conjugate(), verify=True) # Verified R.<x> = QQbar[] QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))).conjugate() sage: sage_input(QQbar.zeta(3).real(), verify=True) # Verified R.<y> = QQ[] QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(-RR(0.50000000000000011), -RR(0.49999999999999994)), RIF(RR(0.8660254037844386), RR(0.86602540378443871)))).real() sage: sage_input(QQbar.zeta(3).imag(), verify=True) # Verified R.<y> = QQ[] QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(-RR(0.50000000000000011), -RR(0.49999999999999994)), RIF(RR(0.8660254037844386), RR(0.86602540378443871)))).imag() sage: sage_input(abs(sqrt(QQbar(-3))), verify=True) # Verified R.<x> = QQbar[] abs(QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774))))) sage: sage_input(sqrt(QQbar(-3)).norm(), verify=True) # Verified R.<x> = QQbar[] QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))).norm() sage: sage_input(QQbar(QQbar.zeta(3).real()), verify=True) # Verified R.<y> = QQ[] QQbar(QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(-RR(0.50000000000000011), -RR(0.49999999999999994)), RIF(RR(0.8660254037844386), RR(0.86602540378443871)))).real()) sage: from sage.rings.qqbar import * sage: from sage.misc.sage_input import SageInputBuilder sage: sib = SageInputBuilder() sage: unexp = ANUnaryExpr(sqrt(AA(2)), '~') sage: unexp.handle_sage_input(sib, False, False) ({unop:~ {call: {getattr: {atomic:AA}.polynomial_root}({call: {getattr: {atomic:AA}.common_polynomial}({binop:- {binop:** {gen:x {constr_parent: {subscr: {atomic:AA}[{atomic:'x'}]} with gens: ('x',)}} {atomic:2}} {atomic:2}})}, {call: {atomic:RIF}({call: {atomic:RR}({atomic:1.4142135623730949})}, {call: {atomic:RR}({atomic:1.4142135623730951})})})}}, True) sage: unexp.handle_sage_input(sib, False, True) ({call: {atomic:QQbar}({unop:~ {call: {getattr: {atomic:AA}.polynomial_root}({call: {getattr: {atomic:AA}.common_polynomial}({binop:- {binop:** {gen:x {constr_parent: {subscr: {atomic:AA}[{atomic:'x'}]} with gens: ('x',)}} {atomic:2}} {atomic:2}})}, {call: {atomic:RIF}({call: {atomic:RR}({atomic:1.4142135623730949})}, {call: {atomic:RR}({atomic:1.4142135623730951})})})}})}, True)
- is_complex()¶
Return whether or not this element is complex. Note that this is a data type check, and triggers no computations – if it returns False, the element might still be real, it just doesn’t know it yet.
EXAMPLES:
sage: t = AA(sqrt(2)) sage: s = (-t)._descr sage: s <sage.rings.qqbar.ANUnaryExpr object at ...> sage: s.is_complex() False sage: QQbar(-sqrt(2))._descr.is_complex() True
- class sage.rings.qqbar.AlgebraicField¶
Bases:
sage.misc.fast_methods.Singleton
,sage.rings.qqbar.AlgebraicField_common
The field of all algebraic complex numbers.
- algebraic_closure()¶
Return the algebraic closure of this field.
As this field is already algebraically closed, just returns
self
.EXAMPLES:
sage: QQbar.algebraic_closure() Algebraic Field
- completion(p, prec, extras={})¶
Return the completion of
self
at the place \(p\).Only implemented for \(p = \infty\) at present.
INPUT:
p
– either a prime (not implemented at present) orInfinity
prec
– precision of approximate field to returnextras
– (optional) a dict of extra keyword arguments for theRealField
constructor
EXAMPLES:
sage: QQbar.completion(infinity, 500) Complex Field with 500 bits of precision sage: QQbar.completion(infinity, prec=53, extras={'type':'RDF'}) Complex Double Field sage: QQbar.completion(infinity, 53) is CC True sage: QQbar.completion(3, 20) Traceback (most recent call last): ... NotImplementedError
- construction()¶
Return a functor that constructs
self
(used by the coercion machinery).EXAMPLES:
sage: QQbar.construction() (AlgebraicClosureFunctor, Rational Field)
- gen(n=0)¶
Return the \(n\)-th element of the tuple returned by
gens()
.EXAMPLES:
sage: QQbar.gen(0) I sage: QQbar.gen(1) Traceback (most recent call last): ... IndexError: n must be 0
- gens()¶
Return a set of generators for this field.
As this field is not finitely generated over its prime field, we opt for just returning I.
EXAMPLES:
sage: QQbar.gens() (I,)
- polynomial_root(poly, interval, multiplicity=1)¶
Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.
The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k\) roots are handled by taking the \((k-1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)
The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.
Note that if you are constructing multiple roots of a single polynomial, it is better to use
QQbar.common_polynomial
to get a shared polynomial.EXAMPLES:
sage: x = polygen(QQbar) sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(0, 2)); phi 1.618033988749895? sage: p = (x-1)^7 * (x-2) sage: r = QQbar.polynomial_root(p, RIF(9/10, 11/10), multiplicity=7) sage: r; r == 1 1 True sage: p = (x-phi)*(x-sqrt(QQbar(2))) sage: r = QQbar.polynomial_root(p, RIF(1, 3/2)) sage: r; r == sqrt(QQbar(2)) 1.414213562373095? True
- random_element(poly_degree=2, *args, **kwds)¶
Return a random algebraic number.
INPUT:
poly_degree
- default: 2 - degree of the random polynomial over the integers of which the returned algebraic number is a root. This is not necessarily the degree of the minimal polynomial of the number. Increase this parameter to achieve a greater diversity of algebraic numbers, at a cost of greater computation time. You can also vary the distribution of the coefficients but that will not vary the degree of the extension containing the element.args
,kwds
- arguments and keywords passed to the random number generator for elements ofZZ
, the integers. Seerandom_element()
for details, or see example below.
OUTPUT:
An element of
QQbar
, the field of algebraic numbers (seesage.rings.qqbar
).ALGORITHM:
A polynomial with degree between 1 and
poly_degree
, with random integer coefficients is created. A root of this polynomial is chosen at random. The default degree is 2 and the integer coefficients come from a distribution heavily weighted towards \(0, \pm 1, \pm 2\).EXAMPLES:
sage: a = QQbar.random_element() sage: a # random 0.2626138748742799? + 0.8769062830975992?*I sage: a in QQbar True sage: b = QQbar.random_element(poly_degree=20) sage: b # random -0.8642649077479498? - 0.5995098147478391?*I sage: b in QQbar True
Parameters for the distribution of the integer coefficients of the polynomials can be passed on to the random element method for integers. For example, current default behavior of this method returns zero about 15% of the time; if we do not include zero as a possible coefficient, there will never be a zero constant term, and thus never a zero root.
sage: z = [QQbar.random_element(x=1, y=10) for _ in range(20)] sage: QQbar(0) in z False
If you just want real algebraic numbers you can filter them out. Using an odd degree for the polynomials will ensure some degree of success.
sage: r = [] sage: while len(r) < 3: ....: x = QQbar.random_element(poly_degree=3) ....: if x in AA: ....: r.append(x) sage: (len(r) == 3) and all(z in AA for z in r) True
- zeta(n=4)¶
Return a primitive \(n\)’th root of unity, specifically \(\exp(2*\pi*i/n)\).
INPUT:
n
(integer) – default 4
EXAMPLES:
sage: QQbar.zeta(1) 1 sage: QQbar.zeta(2) -1 sage: QQbar.zeta(3) -0.500000000000000? + 0.866025403784439?*I sage: QQbar.zeta(4) I sage: QQbar.zeta() I sage: QQbar.zeta(5) 0.3090169943749474? + 0.9510565162951536?*I sage: QQbar.zeta(3000) 0.999997806755380? + 0.002094393571219374?*I
- class sage.rings.qqbar.AlgebraicField_common¶
Bases:
sage.rings.ring.Field
Common base class for the classes
AlgebraicRealField
andAlgebraicField
.- characteristic()¶
Return the characteristic of this field.
Since this class is only used for fields of characteristic 0, this always returns 0.
EXAMPLES:
sage: AA.characteristic() 0
- common_polynomial(poly)¶
Given a polynomial with algebraic coefficients, returns a wrapper that caches high-precision calculations and factorizations. This wrapper can be passed to
polynomial_root
in place of the polynomial.Using
common_polynomial
makes no semantic difference, but will improve efficiency if you are dealing with multiple roots of a single polynomial.EXAMPLES:
sage: x = polygen(ZZ) sage: p = AA.common_polynomial(x^2 - x - 1) sage: phi = AA.polynomial_root(p, RIF(1, 2)) sage: tau = AA.polynomial_root(p, RIF(-1, 0)) sage: phi + tau == 1 True sage: phi * tau == -1 True sage: x = polygen(SR) sage: p = (x - sqrt(-5)) * (x - sqrt(3)); p x^2 + (-sqrt(3) - sqrt(-5))*x + sqrt(3)*sqrt(-5) sage: p = QQbar.common_polynomial(p) sage: a = QQbar.polynomial_root(p, CIF(RIF(-0.1, 0.1), RIF(2, 3))); a 0.?e-18 + 2.236067977499790?*I sage: b = QQbar.polynomial_root(p, RIF(1, 2)); b 1.732050807568878?
These “common polynomials” can be shared between real and complex roots:
sage: p = AA.common_polynomial(x^3 - x - 1) sage: r1 = AA.polynomial_root(p, RIF(1.3, 1.4)); r1 1.324717957244746? sage: r2 = QQbar.polynomial_root(p, CIF(RIF(-0.7, -0.6), RIF(0.5, 0.6))); r2 -0.6623589786223730? + 0.5622795120623013?*I
- default_interval_prec()¶
Return the default interval precision used for root isolation.
EXAMPLES:
sage: AA.default_interval_prec() 64
- options(*get_value, **set_value)¶
OPTIONS:
display_format
– (default:decimal
)decimal
– Always display a decimal approximationradical
– Display using radicals (if possible)
See
GlobalOptions
for more features of these options.
- order()¶
Return the cardinality of
self
.Since this class is only used for fields of characteristic 0, always returns Infinity.
EXAMPLES:
sage: QQbar.order() +Infinity
- class sage.rings.qqbar.AlgebraicGenerator(field, root)¶
Bases:
sage.structure.sage_object.SageObject
An
AlgebraicGenerator
represents both an algebraic number \(\alpha\) and the number field \(\QQ[\alpha]\). There is a singleAlgebraicGenerator
representing \(\QQ\) (with \(\alpha=0\)).The
AlgebraicGenerator
class is private, and should not be used directly.- conjugate()¶
If this generator is for the algebraic number \(\alpha\), return a generator for the complex conjugate of \(\alpha\).
EXAMPLES:
sage: from sage.rings.qqbar import AlgebraicGenerator sage: x = polygen(QQ); f = x^4 + x + 17 sage: nf = NumberField(f,name='a') sage: b = f.roots(QQbar)[0][0] sage: root = b._descr sage: gen = AlgebraicGenerator(nf, root) sage: gen.conjugate() Number Field in a with defining polynomial x^4 + x + 17 with a in -1.436449997483091? + 1.374535713065812?*I
- field()¶
Return the number field attached to self.
EXAMPLES:
sage: from sage.rings.qqbar import qq_generator sage: qq_generator.field() Rational Field
- is_complex()¶
Return
True
if this is a generator for a non-real number field.EXAMPLES:
sage: z7 = QQbar.zeta(7) sage: g = z7._descr._generator sage: g.is_complex() True sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator sage: y = polygen(QQ, 'y') sage: x = polygen(QQbar) sage: nf = NumberField(y^2 - y - 1, name='a', check=False) sage: root = ANRoot(x^2 - x - 1, RIF(1, 2)) sage: gen = AlgebraicGenerator(nf, root) sage: gen.is_complex() False
- is_trivial()¶
Return true iff this is the trivial generator (alpha == 1), which does not actually extend the rationals.
EXAMPLES:
sage: from sage.rings.qqbar import qq_generator sage: qq_generator.is_trivial() True
- pari_field()¶
Return the PARI field attached to this generator.
EXAMPLES:
sage: from sage.rings.qqbar import qq_generator sage: qq_generator.pari_field() Traceback (most recent call last): ... ValueError: No PARI field attached to trivial generator sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator, qq_generator sage: y = polygen(QQ) sage: x = polygen(QQbar) sage: nf = NumberField(y^2 - y - 1, name='a', check=False) sage: root = ANRoot(x^2 - x - 1, RIF(1, 2)) sage: gen = AlgebraicGenerator(nf, root) sage: gen.pari_field() [y^2 - y - 1, [2, 0], ...]
- root_as_algebraic()¶
Return the root attached to self as an algebraic number.
EXAMPLES:
sage: t = sage.rings.qqbar.qq_generator.root_as_algebraic(); t 1 sage: t.parent() Algebraic Real Field
- super_poly(super, checked=None)¶
Given a generator
gen
and another generatorsuper
, wheresuper
is the result of a tree ofunion()
operations where one of the leaves isgen
,gen.super_poly(super)
returns a polynomial expressing the value ofgen
in terms of the value ofsuper
(except that ifgen
isqq_generator
,super_poly()
always returns None.)EXAMPLES:
sage: from sage.rings.qqbar import AlgebraicGenerator, ANRoot, qq_generator sage: _.<y> = QQ['y'] sage: x = polygen(QQbar) sage: nf2 = NumberField(y^2 - 2, name='a', check=False) sage: root2 = ANRoot(x^2 - 2, RIF(1, 2)) sage: gen2 = AlgebraicGenerator(nf2, root2) sage: gen2 Number Field in a with defining polynomial y^2 - 2 with a in 1.414213562373095? sage: nf3 = NumberField(y^2 - 3, name='a', check=False) sage: root3 = ANRoot(x^2 - 3, RIF(1, 2)) sage: gen3 = AlgebraicGenerator(nf3, root3) sage: gen3 Number Field in a with defining polynomial y^2 - 3 with a in 1.732050807568878? sage: gen2_3 = gen2.union(gen3) sage: gen2_3 Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 0.5176380902050415? sage: qq_generator.super_poly(gen2) is None True sage: gen2.super_poly(gen2_3) -a^3 + 3*a sage: gen3.super_poly(gen2_3) -a^2 + 2
- union(other)¶
Given generators
alpha
andbeta
,alpha.union(beta)
gives a generator for the number field \(\QQ[\alpha][\beta]\).EXAMPLES:
sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator, qq_generator sage: _.<y> = QQ['y'] sage: x = polygen(QQbar) sage: nf2 = NumberField(y^2 - 2, name='a', check=False) sage: root2 = ANRoot(x^2 - 2, RIF(1, 2)) sage: gen2 = AlgebraicGenerator(nf2, root2) sage: gen2 Number Field in a with defining polynomial y^2 - 2 with a in 1.414213562373095? sage: nf3 = NumberField(y^2 - 3, name='a', check=False) sage: root3 = ANRoot(x^2 - 3, RIF(1, 2)) sage: gen3 = AlgebraicGenerator(nf3, root3) sage: gen3 Number Field in a with defining polynomial y^2 - 3 with a in 1.732050807568878? sage: gen2.union(qq_generator) is gen2 True sage: qq_generator.union(gen3) is gen3 True sage: gen2.union(gen3) Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 0.5176380902050415?
- class sage.rings.qqbar.AlgebraicGeneratorRelation(child1, child1_poly, child2, child2_poly, parent)¶
Bases:
sage.structure.sage_object.SageObject
A simple class for maintaining relations in the lattice of algebraic extensions.
- class sage.rings.qqbar.AlgebraicNumber(x)¶
Bases:
sage.rings.qqbar.AlgebraicNumber_base
The class for algebraic numbers (complex numbers which are the roots of a polynomial with integer coefficients). Much of its functionality is inherited from
AlgebraicNumber_base
.- _richcmp_(other, op)¶
Compare two algebraic numbers, lexicographically. (That is, first compare the real components; if the real components are equal, compare the imaginary components.)
EXAMPLES:
sage: x = QQbar.zeta(3); x -0.500000000000000? + 0.866025403784439?*I sage: QQbar(-1) < x True sage: QQbar(-1/2) < x True sage: QQbar(0) > x True
One problem with this lexicographic ordering is the fact that if two algebraic numbers have the same real component, that real component has to be compared for exact equality, which can be a costly operation. For the special case where both numbers have the same minimal polynomial, that cost can be avoided, though (see trac ticket #16964):
sage: x = polygen(ZZ) sage: p = 69721504*x^8 + 251777664*x^6 + 329532012*x^4 + 184429548*x^2 + 37344321 sage: sorted(p.roots(QQbar,False)) [-0.0221204634374361? - 1.090991904211621?*I, -0.0221204634374361? + 1.090991904211621?*I, -0.8088604911480535?*I, 0.?e-215 - 0.7598602580415435?*I, 0.?e-229 + 0.7598602580415435?*I, 0.8088604911480535?*I, 0.0221204634374361? - 1.090991904211621?*I, 0.0221204634374361? + 1.090991904211621?*I]
It also works for comparison of conjugate roots even in a degenerate situation where many roots have the same real part. In the following example, the polynomial
p2
is irreducible and all its roots have real part equal to \(1\):sage: p1 = x^8 + 74*x^7 + 2300*x^6 + 38928*x^5 + \ ....: 388193*x^4 + 2295312*x^3 + 7613898*x^2 + \ ....: 12066806*x + 5477001 sage: p2 = p1((x-1)^2) sage: sum(1 for r in p2.roots(CC,False) if abs(r.real() - 1) < 0.0001) 16 sage: r1 = QQbar.polynomial_root(p2, CIF(1, (-4.1,-4.0))) sage: r2 = QQbar.polynomial_root(p2, CIF(1, (4.0, 4.1))) sage: all([r1<r2, r1==r1, r2==r2, r2>r1]) True
Though, comparing roots which are not equal or conjugate is much slower because the algorithm needs to check the equality of the real parts:
sage: sorted(p2.roots(QQbar,False)) # long time - 3 secs [1.000000000000000? - 4.016778562562223?*I, 1.000000000000000? - 3.850538755978243?*I, 1.000000000000000? - 3.390564396412898?*I, ... 1.000000000000000? + 3.390564396412898?*I, 1.000000000000000? + 3.850538755978243?*I, 1.000000000000000? + 4.016778562562223?*I]
- complex_exact(field)¶
Given a
ComplexField
, return the best possible approximation of this number in that field. Note that if either component is sufficiently close to the halfway point between two floating-point numbers in the correspondingRealField
, then this will trigger exact computation, which may be very slow.EXAMPLES:
sage: a = QQbar.zeta(9) + QQbar(I) + QQbar.zeta(9).conjugate(); a 1.532088886237957? + 1.000000000000000?*I sage: a.complex_exact(CIF) 1.532088886237957? + 1*I
- complex_number(field)¶
Given the complex field
field
compute an accurate approximation of this element in that field.The approximation will be off by at most two ulp’s in each component, except for components which are very close to zero, which will have an absolute error at most \(2^{-prec+1}\) where \(prec\) is the precision of the field.
EXAMPLES:
sage: a = QQbar.zeta(5) sage: a.complex_number(CC) 0.309016994374947 + 0.951056516295154*I sage: b = QQbar(2).sqrt() + QQbar(3).sqrt() * QQbar.gen() sage: b.complex_number(ComplexField(128)) 1.4142135623730950488016887242096980786 + 1.7320508075688772935274463415058723669*I
- conjugate()¶
Return the complex conjugate of
self
.EXAMPLES:
sage: QQbar(3 + 4*I).conjugate() 3 - 4*I sage: QQbar.zeta(7).conjugate() 0.6234898018587335? - 0.7818314824680299?*I sage: QQbar.zeta(7) + QQbar.zeta(7).conjugate() 1.246979603717467? + 0.?e-18*I
- imag()¶
Return the imaginary part of self.
EXAMPLES:
sage: QQbar.zeta(7).imag() 0.7818314824680299?
- interval_exact(field)¶
Given a
ComplexIntervalField
, compute the best possible approximation of this number in that field. Note that if either the real or imaginary parts of this number are sufficiently close to some floating-point number (and, in particular, if either is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.EXAMPLES:
sage: a = QQbar(I).sqrt(); a 0.7071067811865475? + 0.7071067811865475?*I sage: a.interval_exact(CIF) 0.7071067811865475? + 0.7071067811865475?*I sage: b = QQbar((1+I)*sqrt(2)/2) sage: (a - b).interval(CIF) 0.?e-19 + 0.?e-18*I sage: (a - b).interval_exact(CIF) 0
- multiplicative_order()¶
Compute the multiplicative order of this algebraic number.
That is, find the smallest positive integer \(n\) such that \(x^n = 1\). If there is no such \(n\), returns
+Infinity
.We first check that
abs(x)
is very close to 1. If so, we compute \(x\) exactly and examine its argument.EXAMPLES:
sage: QQbar(-sqrt(3)/2 - I/2).multiplicative_order() 12 sage: QQbar(1).multiplicative_order() 1 sage: QQbar(-I).multiplicative_order() 4 sage: QQbar(707/1000 + 707/1000*I).multiplicative_order() +Infinity sage: QQbar(3/5 + 4/5*I).multiplicative_order() +Infinity
- norm()¶
Return
self * self.conjugate()
.This is the algebraic definition of norm, if we view
QQbar
asAA[I]
.EXAMPLES:
sage: QQbar(3 + 4*I).norm() 25 sage: type(QQbar(I).norm()) <class 'sage.rings.qqbar.AlgebraicReal'> sage: QQbar.zeta(1007).norm() 1.000000000000000?
- rational_argument()¶
Return the argument of
self
, divided by \(2\pi\), as long as this result is rational. Otherwise returnsNone
. Always triggers exact computation.EXAMPLES:
sage: QQbar((1+I)*(sqrt(2)+sqrt(5))).rational_argument() 1/8 sage: QQbar(-1 + I*sqrt(3)).rational_argument() 1/3 sage: QQbar(-1 - I*sqrt(3)).rational_argument() -1/3 sage: QQbar(3+4*I).rational_argument() is None True sage: (QQbar(2)**(1/5) * QQbar.zeta(7)**2).rational_argument() # long time 2/7 sage: (QQbar.zeta(73)**5).rational_argument() 5/73 sage: (QQbar.zeta(3)^65536).rational_argument() 1/3
- real()¶
Return the real part of self.
EXAMPLES:
sage: QQbar.zeta(5).real() 0.3090169943749474?
- class sage.rings.qqbar.AlgebraicNumberPowQQAction(G, S)¶
Bases:
sage.categories.action.Action
Implement powering of an algebraic number (an element of
QQbar
orAA
) by a rational.This is always a right action.
INPUT:
G
– must beQQ
S
– the parent on which to act, eitherAA
orQQbar
.
Note
To compute
x ^ (a/b)
, we take the \(b\)’th root of \(x\); then we take that to the \(a\)’th power. If \(x\) is a negative algebraic real and \(b\) is odd, take the real \(b\)’th root; otherwise take the principal \(b\)’th root.EXAMPLES:
In
QQbar
:sage: QQbar(2)^(1/2) 1.414213562373095? sage: QQbar(8)^(2/3) 4 sage: QQbar(8)^(2/3) == 4 True sage: x = polygen(QQbar) sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(1, 2)) sage: tau = QQbar.polynomial_root(x^2 - x - 1, RIF(-1, 0)) sage: rt5 = QQbar(5)^(1/2) sage: phi^10 / rt5 55.00363612324742? sage: tau^10 / rt5 0.003636123247413266? sage: (phi^10 - tau^10) / rt5 55.00000000000000? sage: (phi^10 - tau^10) / rt5 == fibonacci(10) True sage: (phi^50 - tau^50) / rt5 == fibonacci(50) True sage: QQbar(-8)^(1/3) 1.000000000000000? + 1.732050807568878?*I sage: (QQbar(-8)^(1/3))^3 -8 sage: QQbar(32)^(1/5) 2 sage: a = QQbar.zeta(7)^(1/3); a 0.9555728057861407? + 0.2947551744109043?*I sage: a == QQbar.zeta(21) True sage: QQbar.zeta(7)^6 0.6234898018587335? - 0.7818314824680299?*I sage: (QQbar.zeta(7)^6)^(1/3) * QQbar.zeta(21) 1.000000000000000? + 0.?e-17*I
In
AA
:sage: AA(2)^(1/2) 1.414213562373095? sage: AA(8)^(2/3) 4 sage: AA(8)^(2/3) == 4 True sage: x = polygen(AA) sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(0, 2)) sage: tau = AA.polynomial_root(x^2 - x - 1, RIF(-2, 0)) sage: rt5 = AA(5)^(1/2) sage: phi^10 / rt5 55.00363612324742? sage: tau^10 / rt5 0.003636123247413266? sage: (phi^10 - tau^10) / rt5 55.00000000000000? sage: (phi^10 - tau^10) / rt5 == fibonacci(10) True sage: (phi^50 - tau^50) / rt5 == fibonacci(50) True
- class sage.rings.qqbar.AlgebraicNumber_base(parent, x)¶
Bases:
sage.structure.element.FieldElement
This is the common base class for algebraic numbers (complex numbers which are the zero of a polynomial in \(\ZZ[x]\)) and algebraic reals (algebraic numbers which happen to be real).
AlgebraicNumber
objects can be created usingQQbar
(==AlgebraicNumberField()
), andAlgebraicReal
objects can be created usingAA
(==AlgebraicRealField()
). They can be created either by coercing a rational or a symbolic expression, or by using theQQbar.polynomial_root()
orAA.polynomial_root()
method to construct a particular root of a polynomial with algebraic coefficients. Also,AlgebraicNumber
andAlgebraicReal
are closed under addition, subtraction, multiplication, division (except by 0), and rational powers (including roots), except that for a negativeAlgebraicReal
, taking a power with an even denominator returns anAlgebraicNumber
instead of anAlgebraicReal
.AlgebraicNumber
andAlgebraicReal
objects can be approximated to any desired precision. They can be compared exactly; if the two numbers are very close, or are equal, this may require exact computation, which can be extremely slow.As long as exact computation is not triggered, computation with algebraic numbers should not be too much slower than computation with intervals. As mentioned above, exact computation is triggered when comparing two algebraic numbers which are very close together. This can be an explicit comparison in user code, but the following list of actions (not necessarily complete) can also trigger exact computation:
Dividing by an algebraic number which is very close to 0.
Using an algebraic number which is very close to 0 as the leading coefficient in a polynomial.
Taking a root of an algebraic number which is very close to 0.
The exact definition of “very close” is subject to change; currently, we compute our best approximation of the two numbers using 128-bit arithmetic, and see if that’s sufficient to decide the comparison. Note that comparing two algebraic numbers which are actually equal will always trigger exact computation, unless they are actually the same object.
EXAMPLES:
sage: sqrt(QQbar(2)) 1.414213562373095? sage: sqrt(QQbar(2))^2 == 2 True sage: x = polygen(QQbar) sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(1, 2)) sage: phi 1.618033988749895? sage: phi^2 == phi+1 True sage: AA(sqrt(65537)) 256.0019531175495?
- as_number_field_element(minimal=False, embedded=False, prec=53)¶
Return a number field containing this value, a representation of this value as an element of that number field, and a homomorphism from the number field back to
AA
orQQbar
.INPUT:
minimal
– Boolean (default:False
). Whether to minimize the degree of the extension.embedded
– Boolean (default:False
). Whether to make the NumberField embedded.prec
– integer (default:53
). The number of bit of precision to guarantee finding real roots.
This may not return the smallest such number field, unless
minimal=True
is specified.To compute a single number field containing multiple algebraic numbers, use the function
number_field_elements_from_algebraics
instead.EXAMPLES:
sage: QQbar(sqrt(8)).as_number_field_element() (Number Field in a with defining polynomial y^2 - 2, 2*a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 2 To: Algebraic Real Field Defn: a |--> 1.414213562373095?) sage: x = polygen(ZZ) sage: p = x^3 + x^2 + x + 17 sage: (rt,) = p.roots(ring=AA, multiplicities=False); rt -2.804642726932742? sage: (nf, elt, hom) = rt.as_number_field_element() sage: nf, elt, hom (Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50, a^2 - 5*a - 19, Ring morphism: From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50 To: Algebraic Real Field Defn: a |--> 7.237653139801104?) sage: elt == rt False sage: AA(elt) Traceback (most recent call last): ... ValueError: need a real or complex embedding to convert a non rational element of a number field into an algebraic number sage: hom(elt) == rt True
Creating an element of an embedded number field:
sage: (nf, elt, hom) = rt.as_number_field_element(embedded=True) sage: nf.coerce_embedding() Generic morphism: From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50 with a = 7.237653139801104? To: Algebraic Real Field Defn: a -> 7.237653139801104? sage: elt a^2 - 5*a - 19 sage: elt.parent() == nf True sage: hom(elt).parent() Algebraic Real Field sage: hom(elt) == rt True sage: elt == rt True sage: AA(elt) -2.804642726932742? sage: RR(elt) -2.80464272693274
A complex algebraic number as an element of an embedded number field:
sage: num = QQbar(sqrt(2) + 3^(1/3)*I) sage: nf, elt, hom = num.as_number_field_element(embedded=True) sage: hom(elt).parent() is QQbar True sage: nf.coerce_embedding() is not None True sage: QQbar(elt) == num == hom(elt) True
We see an example where we do not get the minimal number field unless we specify
minimal=True
:sage: rt2 = AA(sqrt(2)) sage: rt3 = AA(sqrt(3)) sage: rt3b = rt2 + rt3 - rt2 sage: rt3b.as_number_field_element() (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^2 + 2, Ring morphism: From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1 To: Algebraic Real Field Defn: a |--> 0.5176380902050415?) sage: rt3b.as_number_field_element(minimal=True) (Number Field in a with defining polynomial y^2 - 3, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 3 To: Algebraic Real Field Defn: a |--> 1.732050807568878?)
- degree()¶
Return the degree of this algebraic number (the degree of its minimal polynomial, or equivalently, the degree of the smallest algebraic extension of the rationals containing this number).
EXAMPLES:
sage: QQbar(5/3).degree() 1 sage: sqrt(QQbar(2)).degree() 2 sage: QQbar(17).nth_root(5).degree() 5 sage: sqrt(3+sqrt(QQbar(8))).degree() 2
- exactify()¶
Compute an exact representation for this number.
EXAMPLES:
sage: two = QQbar(4).nth_root(4)^2 sage: two 2.000000000000000? sage: two.exactify() sage: two 2
- interval(field)¶
Given an interval field (real or complex, as appropriate) of precision \(p\), compute an interval representation of self with
diameter()
at most \(2^{-p}\); then round that representation into the given field. Herediameter()
is relative diameter for intervals not containing 0, and absolute diameter for intervals that do contain 0; thus, if the returned interval does not contain 0, it has at least \(p-1\) good bits.EXAMPLES:
sage: RIF64 = RealIntervalField(64) sage: x = AA(2).sqrt() sage: y = x*x sage: y = 1000 * y - 999 * y sage: y.interval_fast(RIF64) 2.000000000000000? sage: y.interval(RIF64) 2.000000000000000000? sage: CIF64 = ComplexIntervalField(64) sage: x = QQbar.zeta(11) sage: x.interval_fast(CIF64) 0.8412535328311811689? + 0.5406408174555975821?*I sage: x.interval(CIF64) 0.8412535328311811689? + 0.5406408174555975822?*I
The following implicitly use this method:
sage: RIF(AA(5).sqrt()) 2.236067977499790? sage: AA(-5).sqrt().interval(RIF) Traceback (most recent call last): ... TypeError: unable to convert 2.236067977499790?*I to real interval
- interval_diameter(diam)¶
Compute an interval representation of self with
diameter()
at mostdiam
. The precision of the returned value is unpredictable.EXAMPLES:
sage: AA(2).sqrt().interval_diameter(1e-10) 1.4142135623730950488? sage: AA(2).sqrt().interval_diameter(1e-30) 1.41421356237309504880168872420969807857? sage: QQbar(2).sqrt().interval_diameter(1e-10) 1.4142135623730950488? sage: QQbar(2).sqrt().interval_diameter(1e-30) 1.41421356237309504880168872420969807857?
- interval_fast(field)¶
Given a
RealIntervalField
orComplexIntervalField
, compute the value of this number using interval arithmetic of at least the precision of the field, and return the value in that field. (More precision may be used in the computation.) The returned interval may be arbitrarily imprecise, if this number is the result of a sufficiently long computation chain.EXAMPLES:
sage: x = AA(2).sqrt() sage: x.interval_fast(RIF) 1.414213562373095? sage: x.interval_fast(RealIntervalField(200)) 1.414213562373095048801688724209698078569671875376948073176680? sage: x = QQbar(I).sqrt() sage: x.interval_fast(CIF) 0.7071067811865475? + 0.7071067811865475?*I sage: x.interval_fast(RIF) Traceback (most recent call last): ... TypeError: unable to convert complex interval 0.7071067811865475244? + 0.7071067811865475244?*I to real interval
- is_integer()¶
Return
True
if this number is a integer.EXAMPLES:
sage: QQbar(2).is_integer() True sage: QQbar(1/2).is_integer() False
- is_square()¶
Return whether or not this number is square.
OUTPUT:
(boolean)
True
in all cases for elements ofQQbar
;True
for non-negative elements ofAA
; otherwiseFalse
EXAMPLES:
sage: AA(2).is_square() True sage: AA(-2).is_square() False sage: QQbar(-2).is_square() True sage: QQbar(I).is_square() True
- minpoly()¶
Compute the minimal polynomial of this algebraic number. The minimal polynomial is the monic polynomial of least degree having this number as a root; it is unique.
EXAMPLES:
sage: QQbar(4).sqrt().minpoly() x - 2 sage: ((QQbar(2).nth_root(4))^2).minpoly() x^2 - 2 sage: v = sqrt(QQbar(2)) + sqrt(QQbar(3)); v 3.146264369941973? sage: p = v.minpoly(); p x^4 - 10*x^2 + 1 sage: p(RR(v.real())) 1.31006316905768e-14
- nth_root(n, all=False)¶
Return the
n
-th root of this number.INPUT:
all
- bool (default:False
). IfTrue
, return a list of all \(n\)-th roots as complex algebraic numbers.
Warning
Note that for odd \(n\), all=`False` and negative real numbers,
AlgebraicReal
andAlgebraicNumber
values give different answers:AlgebraicReal
values prefer real results, andAlgebraicNumber
values return the principal root.EXAMPLES:
sage: AA(-8).nth_root(3) -2 sage: QQbar(-8).nth_root(3) 1.000000000000000? + 1.732050807568878?*I sage: QQbar.zeta(12).nth_root(15) 0.9993908270190957? + 0.03489949670250097?*I
You can get all
n
-th roots of algebraic numbers:sage: AA(-8).nth_root(3, all=True) [1.000000000000000? + 1.732050807568878?*I, -2.000000000000000? + 0.?e-18*I, 1.000000000000000? - 1.732050807568878?*I] sage: QQbar(1+I).nth_root(4, all=True) [1.069553932363986? + 0.2127475047267431?*I, -0.2127475047267431? + 1.069553932363986?*I, -1.069553932363986? - 0.2127475047267431?*I, 0.2127475047267431? - 1.069553932363986?*I]
- radical_expression()¶
Attempt to obtain a symbolic expression using radicals. If no exact symbolic expression can be found, the algebraic number will be returned without modification.
EXAMPLES:
sage: AA(1/sqrt(5)).radical_expression() sqrt(1/5) sage: AA(sqrt(5 + sqrt(5))).radical_expression() sqrt(sqrt(5) + 5) sage: QQbar.zeta(5).radical_expression() 1/4*sqrt(5) + 1/2*sqrt(-1/2*sqrt(5) - 5/2) - 1/4 sage: a = QQ[x](x^7 - x - 1).roots(AA, False)[0] sage: a.radical_expression() 1.112775684278706? sage: a.radical_expression().parent() == SR False sage: a = sorted(QQ[x](x^7-x-1).roots(QQbar, False), key=imag)[0] sage: a.radical_expression() -0.3636235193291805? - 0.9525611952610331?*I sage: QQbar.zeta(5).imag().radical_expression() 1/2*sqrt(1/2*sqrt(5) + 5/2) sage: AA(5/3).radical_expression() 5/3 sage: AA(5/3).radical_expression().parent() == SR True sage: QQbar(0).radical_expression() 0
- simplify()¶
Compute an exact representation for this number, in the smallest possible number field.
EXAMPLES:
sage: rt2 = AA(sqrt(2)) sage: rt3 = AA(sqrt(3)) sage: rt2b = rt3 + rt2 - rt3 sage: rt2b.exactify() sage: rt2b._exact_value() a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137? sage: rt2b.simplify() sage: rt2b._exact_value() a where a^2 - 2 = 0 and a in 1.414213562373095?
- sqrt(all=False, extend=True)¶
Return the square root(s) of this number.
INPUT:
extend
- bool (default: True); ignored if self is in QQbar, or positive in AA. If self is negative in AA, do the following: if True, return a square root of self in QQbar, otherwise raise a ValueError.all
- bool (default: False); if True, return a list of all square roots. If False, return just one square root, or raise an ValueError if self is a negative element of AA and extend=False.
OUTPUT:
Either the principal square root of self, or a list of its square roots (with the principal one first).
EXAMPLES:
sage: AA(2).sqrt() 1.414213562373095? sage: QQbar(I).sqrt() 0.7071067811865475? + 0.7071067811865475?*I sage: QQbar(I).sqrt(all=True) [0.7071067811865475? + 0.7071067811865475?*I, -0.7071067811865475? - 0.7071067811865475?*I] sage: a = QQbar(0) sage: a.sqrt() 0 sage: a.sqrt(all=True) [0] sage: a = AA(0) sage: a.sqrt() 0 sage: a.sqrt(all=True) [0]
This second example just shows that the program does not care where 0 is defined, it gives the same answer regardless. After all, how many ways can you square-root zero?
sage: AA(-2).sqrt() 1.414213562373095?*I sage: AA(-2).sqrt(all=True) [1.414213562373095?*I, -1.414213562373095?*I] sage: AA(-2).sqrt(extend=False) Traceback (most recent call last): ... ValueError: -2 is not a square in AA, being negative. Use extend = True for a square root in QQbar.
- class sage.rings.qqbar.AlgebraicPolynomialTracker(poly)¶
Bases:
sage.structure.sage_object.SageObject
Keeps track of a polynomial used for algebraic numbers.
If multiple algebraic numbers are created as roots of a single polynomial, this allows the polynomial and information about the polynomial to be shared. This reduces work if the polynomial must be recomputed at higher precision, or if it must be factored.
This class is private, and should only be constructed by
AA.common_polynomial()
orQQbar.common_polynomial()
, and should only be used as an argument toAA.polynomial_root()
orQQbar.polynomial_root()
. (It does not matter whether you create the common polynomial withAA.common_polynomial()
orQQbar.common_polynomial()
.)EXAMPLES:
sage: x = polygen(QQbar) sage: P = QQbar.common_polynomial(x^2 - x - 1) sage: P x^2 - x - 1 sage: QQbar.polynomial_root(P, RIF(1, 2)) 1.618033988749895?
- complex_roots(prec, multiplicity)¶
Find the roots of
self
in the complex field to precisionprec
.EXAMPLES:
sage: x = polygen(ZZ) sage: cp = AA.common_polynomial(x^4 - 2)
Note that the precision is not guaranteed to find the tightest possible interval since
complex_roots()
depends on the underlying BLAS implementation.sage: cp.complex_roots(30, 1) [-1.18920711500272...?, 1.189207115002721?, -1.189207115002721?*I, 1.189207115002721?*I]
- exactify()¶
Compute a common field that holds all of the algebraic coefficients of this polynomial, then factor the polynomial over that field. Store the factors for later use (ignoring multiplicity).
EXAMPLES:
sage: x = polygen(AA) sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3)) sage: cp = AA.common_polynomial(p) sage: cp._exact False sage: cp.exactify() sage: cp._exact True
- factors()¶
EXAMPLES:
sage: x = polygen(QQ) sage: f = QQbar.common_polynomial(x^4 + 4) sage: f.factors() [y^2 - 2*y + 2, y^2 + 2*y + 2]
- generator()¶
Return an
AlgebraicGenerator
for a number field containing all the coefficients of self.EXAMPLES:
sage: x = polygen(AA) sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3)) sage: cp = AA.common_polynomial(p) sage: cp.generator() Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 1.931851652578137?
- is_complex()¶
Return
True
if the coefficients of this polynomial are non-real.EXAMPLES:
sage: x = polygen(QQ); f = x^3 - 7 sage: g = AA.common_polynomial(f) sage: g.is_complex() False sage: QQbar.common_polynomial(x^3 - QQbar(I)).is_complex() True
- poly()¶
Return the underlying polynomial of self.
EXAMPLES:
sage: x = polygen(QQ) sage: f = x^3 - 7 sage: g = AA.common_polynomial(f) sage: g.poly() y^3 - 7
- class sage.rings.qqbar.AlgebraicReal(x)¶
Bases:
sage.rings.qqbar.AlgebraicNumber_base
A real algebraic number.
- _richcmp_(other, op)¶
Compare two algebraic reals.
EXAMPLES:
sage: AA(2).sqrt() < AA(3).sqrt() True sage: ((5+AA(5).sqrt())/2).sqrt() == 2*QQbar.zeta(5).imag() True sage: AA(3).sqrt() + AA(2).sqrt() < 3 False
- ceil()¶
Return the smallest integer not smaller than
self
.EXAMPLES:
sage: AA(sqrt(2)).ceil() 2 sage: AA(-sqrt(2)).ceil() -1 sage: AA(42).ceil() 42
- conjugate()¶
Return the complex conjugate of
self
, i.e. returns itself.EXAMPLES:
sage: a = AA(sqrt(2) + sqrt(3)) sage: a.conjugate() 3.146264369941973? sage: a.conjugate() is a True
- floor()¶
Return the largest integer not greater than
self
.EXAMPLES:
sage: AA(sqrt(2)).floor() 1 sage: AA(-sqrt(2)).floor() -2 sage: AA(42).floor() 42
- imag()¶
Return the imaginary part of this algebraic real.
It always returns 0.
EXAMPLES:
sage: a = AA(sqrt(2) + sqrt(3)) sage: a.imag() 0 sage: parent(a.imag()) Algebraic Real Field
- interval_exact(field)¶
Given a
RealIntervalField
, compute the best possible approximation of this number in that field. Note that if this number is sufficiently close to some floating-point number (and, in particular, if this number is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.EXAMPLES:
sage: x = AA(2).sqrt() sage: y = x*x sage: x.interval(RIF) 1.414213562373095? sage: x.interval_exact(RIF) 1.414213562373095? sage: y.interval(RIF) 2.000000000000000? sage: y.interval_exact(RIF) 2 sage: z = 1 + AA(2).sqrt() / 2^200 sage: z.interval(RIF) 1.000000000000001? sage: z.interval_exact(RIF) 1.000000000000001?
- multiplicative_order()¶
Compute the multiplicative order of this real algebraic number.
That is, find the smallest positive integer \(n\) such that \(x^n = 1\). If there is no such \(n\), returns
+Infinity
.We first check that
abs(x)
is very close to 1. If so, we compute \(x\) exactly and compare it to 1 and -1.EXAMPLES:
sage: AA(1).multiplicative_order() 1 sage: AA(-1).multiplicative_order() 2 sage: AA(5).sqrt().multiplicative_order() +Infinity
- real()¶
Return the real part of this algebraic real.
It always returns
self
.EXAMPLES:
sage: a = AA(sqrt(2) + sqrt(3)) sage: a.real() 3.146264369941973? sage: a.real() is a True
- real_exact(field)¶
Given a
RealField
, compute the best possible approximation of this number in that field. Note that if this number is sufficiently close to the halfway point between two floating-point numbers in the field (for the default round-to-nearest mode) or if the number is sufficiently close to a floating-point number in the field (for directed rounding modes), then this will trigger exact computation, which may be very slow.The rounding mode of the field is respected.
EXAMPLES:
sage: x = AA(2).sqrt()^2 sage: x.real_exact(RR) 2.00000000000000 sage: x.real_exact(RealField(53, rnd='RNDD')) 2.00000000000000 sage: x.real_exact(RealField(53, rnd='RNDU')) 2.00000000000000 sage: x.real_exact(RealField(53, rnd='RNDZ')) 2.00000000000000 sage: (-x).real_exact(RR) -2.00000000000000 sage: (-x).real_exact(RealField(53, rnd='RNDD')) -2.00000000000000 sage: (-x).real_exact(RealField(53, rnd='RNDU')) -2.00000000000000 sage: (-x).real_exact(RealField(53, rnd='RNDZ')) -2.00000000000000 sage: y = (x-2).real_exact(RR).abs() sage: y == 0.0 or y == -0.0 # the sign of 0.0 is not significant in MPFI True sage: y = (x-2).real_exact(RealField(53, rnd='RNDD')) sage: y == 0.0 or y == -0.0 # same as above True sage: y = (x-2).real_exact(RealField(53, rnd='RNDU')) sage: y == 0.0 or y == -0.0 # idem True sage: y = (x-2).real_exact(RealField(53, rnd='RNDZ')) sage: y == 0.0 or y == -0.0 # ibidem True sage: y = AA(2).sqrt() sage: y.real_exact(RR) 1.41421356237310 sage: y.real_exact(RealField(53, rnd='RNDD')) 1.41421356237309 sage: y.real_exact(RealField(53, rnd='RNDU')) 1.41421356237310 sage: y.real_exact(RealField(53, rnd='RNDZ')) 1.41421356237309
- real_number(field)¶
Given a
RealField
, compute a good approximation to self in that field. The approximation will be off by at most two ulp’s, except for numbers which are very close to 0, which will have an absolute error at most2**(-(field.prec()-1))
. Also, the rounding mode of the field is respected.EXAMPLES:
sage: x = AA(2).sqrt()^2 sage: x.real_number(RR) 2.00000000000000 sage: x.real_number(RealField(53, rnd='RNDD')) 1.99999999999999 sage: x.real_number(RealField(53, rnd='RNDU')) 2.00000000000001 sage: x.real_number(RealField(53, rnd='RNDZ')) 1.99999999999999 sage: (-x).real_number(RR) -2.00000000000000 sage: (-x).real_number(RealField(53, rnd='RNDD')) -2.00000000000001 sage: (-x).real_number(RealField(53, rnd='RNDU')) -1.99999999999999 sage: (-x).real_number(RealField(53, rnd='RNDZ')) -1.99999999999999 sage: (x-2).real_number(RR) 5.42101086242752e-20 sage: (x-2).real_number(RealField(53, rnd='RNDD')) -1.08420217248551e-19 sage: (x-2).real_number(RealField(53, rnd='RNDU')) 2.16840434497101e-19 sage: (x-2).real_number(RealField(53, rnd='RNDZ')) 0.000000000000000 sage: y = AA(2).sqrt() sage: y.real_number(RR) 1.41421356237309 sage: y.real_number(RealField(53, rnd='RNDD')) 1.41421356237309 sage: y.real_number(RealField(53, rnd='RNDU')) 1.41421356237310 sage: y.real_number(RealField(53, rnd='RNDZ')) 1.41421356237309
- round()¶
Round
self
to the nearest integer.EXAMPLES:
sage: AA(sqrt(2)).round() 1 sage: AA(1/2).round() 1 sage: AA(-1/2).round() -1
- sign()¶
Compute the sign of this algebraic number (return -1 if negative, 0 if zero, or 1 if positive).
This computes an interval enclosing this number using 128-bit interval arithmetic; if this interval includes 0, then fall back to exact computation (which can be very slow).
EXAMPLES:
sage: AA(-5).nth_root(7).sign() -1 sage: (AA(2).sqrt() - AA(2).sqrt()).sign() 0 sage: a = AA(2).sqrt() + AA(3).sqrt() - 58114382797550084497/18470915334626475921 sage: a.sign() 1 sage: b = AA(2).sqrt() + AA(3).sqrt() - 2602510228533039296408/827174681630786895911 sage: b.sign() -1 sage: c = AA(5)**(1/3) - 1437624125539676934786/840727688792155114277 sage: c.sign() 1 sage: (((a+b)*(a+c)*(b+c))**9 / (a*b*c)).sign() 1 sage: (a-b).sign() 1 sage: (b-a).sign() -1 sage: (a*b).sign() -1 sage: ((a*b).abs() + a).sign() 1 sage: (a*b - b*a).sign() 0 sage: a = AA(sqrt(1/2)) sage: b = AA(-sqrt(1/2)) sage: (a + b).sign() 0
- trunc()¶
Round
self
to the nearest integer toward zero.EXAMPLES:
sage: AA(sqrt(2)).trunc() 1 sage: AA(-sqrt(2)).trunc() -1 sage: AA(1).trunc() 1 sage: AA(-1).trunc() -1
- class sage.rings.qqbar.AlgebraicRealField¶
Bases:
sage.misc.fast_methods.Singleton
,sage.rings.qqbar.AlgebraicField_common
The field of algebraic reals.
- algebraic_closure()¶
Return the algebraic closure of this field, which is the field \(\overline{\QQ}\) of algebraic numbers.
EXAMPLES:
sage: AA.algebraic_closure() Algebraic Field
- completion(p, prec, extras={})¶
Return the completion of
self
at the place \(p\).Only implemented for \(p = \infty\) at present.
INPUT:
p
– either a prime (not implemented at present) orInfinity
prec
– precision of approximate field to returnextras
– (optional) a dict of extra keyword arguments for theRealField
constructor
EXAMPLES:
sage: AA.completion(infinity, 500) Real Field with 500 bits of precision sage: AA.completion(infinity, prec=53, extras={'type':'RDF'}) Real Double Field sage: AA.completion(infinity, 53) is RR True sage: AA.completion(7, 10) Traceback (most recent call last): ... NotImplementedError
- gen(n=0)¶
Return the \(n\)-th element of the tuple returned by
gens()
.EXAMPLES:
sage: AA.gen(0) 1 sage: AA.gen(1) Traceback (most recent call last): ... IndexError: n must be 0
- gens()¶
Return a set of generators for this field.
As this field is not finitely generated, we opt for just returning 1.
EXAMPLES:
sage: AA.gens() (1,)
- polynomial_root(poly, interval, multiplicity=1)¶
Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.
The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k\) roots are handled by taking the \((k-1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)
The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.
Note that if you are constructing multiple roots of a single polynomial, it is better to use
AA.common_polynomial
(orQQbar.common_polynomial
; the two are equivalent) to get a shared polynomial.EXAMPLES:
sage: x = polygen(AA) sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(1, 2)); phi 1.618033988749895? sage: p = (x-1)^7 * (x-2) sage: r = AA.polynomial_root(p, RIF(9/10, 11/10), multiplicity=7) sage: r; r == 1 1.000000000000000? True sage: p = (x-phi)*(x-sqrt(AA(2))) sage: r = AA.polynomial_root(p, RIF(1, 3/2)) sage: r; r == sqrt(AA(2)) 1.414213562373095? True
We allow complex polynomials, as long as the particular root in question is real.
sage: K.<im> = QQ[I] sage: x = polygen(K) sage: p = (im + 1) * (x^3 - 2); p (I + 1)*x^3 - 2*I - 2 sage: r = AA.polynomial_root(p, RIF(1, 2)); r^3 2.000000000000000?
- zeta(n=2)¶
Return an \(n\)-th root of unity in this field. This will raise a
ValueError
if \(n \ne \{1, 2\}\) since no such root exists.INPUT:
n
(integer) – default 2
EXAMPLES:
sage: AA.zeta(1) 1 sage: AA.zeta(2) -1 sage: AA.zeta() -1 sage: AA.zeta(3) Traceback (most recent call last): ... ValueError: no n-th root of unity in algebraic reals
Some silly inputs:
sage: AA.zeta(Mod(-5, 7)) -1 sage: AA.zeta(0) Traceback (most recent call last): ... ValueError: no n-th root of unity in algebraic reals
- sage.rings.qqbar.QQbar = Algebraic Field¶
- sage.rings.qqbar.an_binop_element(a, b, op)¶
Add, subtract, multiply or divide two elements represented as elements of number fields.
EXAMPLES:
sage: sqrt2 = QQbar(2).sqrt() sage: sqrt3 = QQbar(3).sqrt() sage: sqrt5 = QQbar(5).sqrt() sage: a = sqrt2 + sqrt3; a.exactify() sage: b = sqrt3 + sqrt5; b.exactify() sage: type(a._descr) <class 'sage.rings.qqbar.ANExtensionElement'> sage: from sage.rings.qqbar import an_binop_element sage: an_binop_element(a, b, operator.add) <sage.rings.qqbar.ANBinaryExpr object at ...> sage: an_binop_element(a, b, operator.sub) <sage.rings.qqbar.ANBinaryExpr object at ...> sage: an_binop_element(a, b, operator.mul) <sage.rings.qqbar.ANBinaryExpr object at ...> sage: an_binop_element(a, b, operator.truediv) <sage.rings.qqbar.ANBinaryExpr object at ...>
The code tries to use existing unions of number fields:
sage: sqrt17 = QQbar(17).sqrt() sage: sqrt19 = QQbar(19).sqrt() sage: a = sqrt17 + sqrt19 sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2) sage: b, type(b._descr) (40.53909377268655?, <class 'sage.rings.qqbar.ANBinaryExpr'>) sage: a.exactify() sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2) sage: b, type(b._descr) (40.53909377268655?, <class 'sage.rings.qqbar.ANExtensionElement'>)
- sage.rings.qqbar.an_binop_expr(a, b, op)¶
Add, subtract, multiply or divide algebraic numbers represented as binary expressions.
INPUT:
a
,b
– two elementsop
– an operator
EXAMPLES:
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3)) sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5)) sage: type(a._descr); type(b._descr) <class 'sage.rings.qqbar.ANBinaryExpr'> <class 'sage.rings.qqbar.ANBinaryExpr'> sage: from sage.rings.qqbar import an_binop_expr sage: x = an_binop_expr(a, b, operator.add); x <sage.rings.qqbar.ANBinaryExpr object at ...> sage: x.exactify() -6/7*a^7 + 2/7*a^6 + 71/7*a^5 - 26/7*a^4 - 125/7*a^3 + 72/7*a^2 + 43/7*a - 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.12580...? sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3)) sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5)) sage: type(a._descr) <class 'sage.rings.qqbar.ANBinaryExpr'> sage: x = an_binop_expr(a, b, operator.mul); x <sage.rings.qqbar.ANBinaryExpr object at ...> sage: x.exactify() 2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.1258...?
- sage.rings.qqbar.an_binop_rational(a, b, op)¶
Used to add, subtract, multiply or divide algebraic numbers.
Used when both are actually rational.
EXAMPLES:
sage: from sage.rings.qqbar import an_binop_rational sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.add) sage: f 17/7 sage: type(f) <class 'sage.rings.qqbar.ANRational'> sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.mul) sage: f 6/7 sage: type(f) <class 'sage.rings.qqbar.ANRational'>
- sage.rings.qqbar.clear_denominators(poly)¶
Take a monic polynomial and rescale the variable to get a monic polynomial with “integral” coefficients.
This works on any univariate polynomial whose base ring has a
denominator()
method that returns integers; for example, the base ring might be \(\QQ\) or a number field.Returns the scale factor and the new polynomial.
(Inspired by pari:primitive_pol_to_monic .)
We assume that coefficient denominators are “small”; the algorithm factors the denominators, to give the smallest possible scale factor.
EXAMPLES:
sage: from sage.rings.qqbar import clear_denominators sage: _.<x> = QQ['x'] sage: clear_denominators(x + 3/2) (2, x + 3) sage: clear_denominators(x^2 + x/2 + 1/4) (2, x^2 + x + 1)
- sage.rings.qqbar.cmp_elements_with_same_minpoly(a, b, p)¶
Compare the algebraic elements
a
andb
knowing that they have the same minimal polynomialp
.This is an helper function for comparison of algebraic elements (i.e. the methods
AlgebraicNumber._richcmp_()
andAlgebraicReal._richcmp_()
).INPUT:
a
andb
– elements of the algebraic or the real algebraic field with same minimal polynomialp
– the minimal polynomial
OUTPUT:
\(-1\), \(0\), \(1\), \(None\) depending on whether \(a < b\), \(a = b\) or \(a > b\) or the function did not succeed with the given precision of \(a\) and \(b\).
EXAMPLES:
sage: from sage.rings.qqbar import cmp_elements_with_same_minpoly sage: x = polygen(ZZ) sage: p = x^2 - 2 sage: a = AA.polynomial_root(p, RIF(1,2)) sage: b = AA.polynomial_root(p, RIF(-2,-1)) sage: cmp_elements_with_same_minpoly(a, b, p) 1 sage: cmp_elements_with_same_minpoly(-a, b, p) 0
- sage.rings.qqbar.conjugate_expand(v)¶
If the interval
v
(which may be real or complex) includes some purely real numbers, returnv'
containingv
such thatv' == v'.conjugate()
. Otherwise returnv
unchanged. (Note that ifv' == v'.conjugate()
, andv'
includes one non-real root of a real polynomial, thenv'
also includes the conjugate of that root. Also note that the diameter of the return value is at most twice the diameter of the input.)EXAMPLES:
sage: from sage.rings.qqbar import conjugate_expand sage: conjugate_expand(CIF(RIF(0, 1), RIF(1, 2))).str(style='brackets') '[0.0000000000000000 .. 1.0000000000000000] + [1.0000000000000000 .. 2.0000000000000000]*I' sage: conjugate_expand(CIF(RIF(0, 1), RIF(0, 1))).str(style='brackets') '[0.0000000000000000 .. 1.0000000000000000] + [-1.0000000000000000 .. 1.0000000000000000]*I' sage: conjugate_expand(CIF(RIF(0, 1), RIF(-2, 1))).str(style='brackets') '[0.0000000000000000 .. 1.0000000000000000] + [-2.0000000000000000 .. 2.0000000000000000]*I' sage: conjugate_expand(RIF(1, 2)).str(style='brackets') '[1.0000000000000000 .. 2.0000000000000000]'
- sage.rings.qqbar.conjugate_shrink(v)¶
If the interval
v
includes some purely real numbers, return a real interval containing only those real numbers. Otherwise returnv
unchanged.If
v
includes exactly one root of a real polynomial, andv
was returned byconjugate_expand()
, thenconjugate_shrink(v)
still includes that root, and is aRealIntervalFieldElement
iff the root in question is real.EXAMPLES:
sage: from sage.rings.qqbar import conjugate_shrink sage: conjugate_shrink(RIF(3, 4)).str(style='brackets') '[3.0000000000000000 .. 4.0000000000000000]' sage: conjugate_shrink(CIF(RIF(1, 2), RIF(1, 2))).str(style='brackets') '[1.0000000000000000 .. 2.0000000000000000] + [1.0000000000000000 .. 2.0000000000000000]*I' sage: conjugate_shrink(CIF(RIF(1, 2), RIF(0, 1))).str(style='brackets') '[1.0000000000000000 .. 2.0000000000000000]' sage: conjugate_shrink(CIF(RIF(1, 2), RIF(-1, 2))).str(style='brackets') '[1.0000000000000000 .. 2.0000000000000000]'
- sage.rings.qqbar.do_polred(poly, threshold=32)¶
Find a polynomial of reasonably small discriminant that generates the same number field as
poly
, using the PARIpolredbest
function.INPUT:
poly
- a monic irreducible polynomial with integer coefficientsthreshold
- an integer used to decide whether to runpolredbest
OUTPUT:
A triple (
elt_fwd
,elt_back
,new_poly
), where:new_poly
is the new polynomial defining the same number field,elt_fwd
is a polynomial expression for a root of the new polynomial in terms of a root of the original polynomial,elt_back
is a polynomial expression for a root of the original polynomial in terms of a root of the new polynomial.
EXAMPLES:
sage: from sage.rings.qqbar import do_polred sage: R.<x> = QQ['x'] sage: oldpol = x^2 - 5 sage: fwd, back, newpol = do_polred(oldpol) sage: newpol x^2 - x - 1 sage: Kold.<a> = NumberField(oldpol) sage: Knew.<b> = NumberField(newpol) sage: newpol(fwd(a)) 0 sage: oldpol(back(b)) 0 sage: do_polred(x^2 - x - 11) (1/3*x + 1/3, 3*x - 1, x^2 - x - 1) sage: do_polred(x^3 + 123456) (-1/4*x, -4*x, x^3 - 1929)
This shows that trac ticket #13054 has been fixed:
sage: do_polred(x^4 - 4294967296*x^2 + 54265257667816538374400) (1/4*x, 4*x, x^4 - 268435456*x^2 + 211973662764908353025)
- sage.rings.qqbar.find_zero_result(fn, l)¶
l
is a list of some sort.fn
is a function which maps an element ofl
and a precision into an interval (either real or complex) of that precision, such that for sufficient precision, exactly one element ofl
results in an interval containing 0. Returns that one element ofl
.EXAMPLES:
sage: from sage.rings.qqbar import find_zero_result sage: _.<x> = QQ['x'] sage: delta = 10^(-70) sage: p1 = x - 1 sage: p2 = x - 1 - delta sage: p3 = x - 1 + delta sage: p2 == find_zero_result(lambda p, prec: p(RealIntervalField(prec)(1 + delta)), [p1, p2, p3]) True
- sage.rings.qqbar.get_AA_golden_ratio()¶
Return the golden ratio as an element of the algebraic real field. Used by
sage.symbolic.constants.golden_ratio._algebraic_()
.EXAMPLES:
sage: AA(golden_ratio) # indirect doctest 1.618033988749895?
- sage.rings.qqbar.is_AlgebraicField(F)¶
Check whether
F
is anAlgebraicField
instance.EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicField sage: [is_AlgebraicField(x) for x in [AA, QQbar, None, 0, "spam"]] [False, True, False, False, False]
- sage.rings.qqbar.is_AlgebraicField_common(F)¶
Check whether
F
is anAlgebraicField_common
instance.EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicField_common sage: [is_AlgebraicField_common(x) for x in [AA, QQbar, None, 0, "spam"]] [True, True, False, False, False]
- sage.rings.qqbar.is_AlgebraicNumber(x)¶
Test if
x
is an instance ofAlgebraicNumber
. For internal use.EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicNumber sage: is_AlgebraicNumber(AA(sqrt(2))) False sage: is_AlgebraicNumber(QQbar(sqrt(2))) True sage: is_AlgebraicNumber("spam") False
- sage.rings.qqbar.is_AlgebraicReal(x)¶
Test if
x
is an instance ofAlgebraicReal
. For internal use.EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicReal sage: is_AlgebraicReal(AA(sqrt(2))) True sage: is_AlgebraicReal(QQbar(sqrt(2))) False sage: is_AlgebraicReal("spam") False
- sage.rings.qqbar.is_AlgebraicRealField(F)¶
Check whether
F
is anAlgebraicRealField
instance. For internal use.EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicRealField sage: [is_AlgebraicRealField(x) for x in [AA, QQbar, None, 0, "spam"]] [True, False, False, False, False]
- sage.rings.qqbar.isolating_interval(intv_fn, pol)¶
intv_fn
is a function that takes a precision and returns an interval of that precision containing some particular root of pol. (It must return better approximations as the precision increases.) pol is an irreducible polynomial with rational coefficients.Returns an interval containing at most one root of pol.
EXAMPLES:
sage: from sage.rings.qqbar import isolating_interval sage: _.<x> = QQ['x'] sage: isolating_interval(lambda prec: sqrt(RealIntervalField(prec)(2)), x^2 - 2) 1.4142135623730950488?
And an example that requires more precision:
sage: delta = 10^(-70) sage: p = (x - 1) * (x - 1 - delta) * (x - 1 + delta) sage: isolating_interval(lambda prec: RealIntervalField(prec)(1 + delta), p) 1.000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000?
The function also works with complex intervals and complex roots:
sage: p = x^2 - x + 13/36 sage: isolating_interval(lambda prec: ComplexIntervalField(prec)(1/2, 1/3), p) 0.500000000000000000000? + 0.3333333333333333334?*I
- sage.rings.qqbar.number_field_elements_from_algebraics(numbers, minimal=False, same_field=False, embedded=False, prec=53)¶
Given a sequence of elements of either
AA
orQQbar
(or a mixture), computes a number field containing all of these elements, these elements as members of that number field, and a homomorphism from the number field back toAA
orQQbar
.INPUT:
numbers
– a number or list of numbers.minimal
– Boolean (default:False
). Whether to minimize the degree of the extension.same_field
– Boolean (default:False
). See below.embedded
– Boolean (default:False
). Whether to make the NumberField embedded.prec
– integer (default:53
). The number of bit of precision to guarantee finding real roots.
OUTPUT:
A tuple with the NumberField, the numbers inside the NumberField, and a homomorphism from the number field back to
AA
orQQbar
.This may not return the smallest such number field, unless
minimal=True
is specified.If
same_field=True
is specified, and all of the elements are from the same field (eitherAA
orQQbar
), the generated homomorphism will map back to that field. Otherwise, if all specified elements are real, the homomorphism might map back toAA
(and will, ifminimal=True
is specified), even if the elements were inQQbar
.Also, a single number can be passed, rather than a sequence; and any values which are not elements of
AA
orQQbar
will automatically be coerced toQQbar
This function may be useful for efficiency reasons: doing exact computations in the corresponding number field will be faster than doing exact computations directly in
AA
orQQbar
.EXAMPLES:
We can use this to compute the splitting field of a polynomial. (Unfortunately this takes an unreasonably long time for non-toy examples.):
sage: x = polygen(QQ) sage: p = x^3 + x^2 + x + 17 sage: rts = p.roots(ring=QQbar, multiplicities=False) sage: splitting = number_field_elements_from_algebraics(rts)[0]; splitting Number Field in a with defining polynomial y^6 - 40*y^4 - 22*y^3 + 873*y^2 + 1386*y + 594 sage: p.roots(ring=splitting) [(361/29286*a^5 - 19/3254*a^4 - 14359/29286*a^3 + 401/29286*a^2 + 18183/1627*a + 15930/1627, 1), (49/117144*a^5 - 179/39048*a^4 - 3247/117144*a^3 + 22553/117144*a^2 + 1744/4881*a - 17195/6508, 1), (-1493/117144*a^5 + 407/39048*a^4 + 60683/117144*a^3 - 24157/117144*a^2 - 56293/4881*a - 53033/6508, 1)] sage: rt2 = AA(sqrt(2)); rt2 1.414213562373095? sage: rt3 = AA(sqrt(3)); rt3 1.732050807568878? sage: rt3a = QQbar(sqrt(3)); rt3a 1.732050807568878? sage: qqI = QQbar.zeta(4); qqI I sage: z3 = QQbar.zeta(3); z3 -0.500000000000000? + 0.866025403784439?*I sage: rt2b = rt3 + rt2 - rt3; rt2b 1.414213562373095? sage: rt2c = z3 + rt2 - z3; rt2c 1.414213562373095? + 0.?e-19*I sage: number_field_elements_from_algebraics(rt2) (Number Field in a with defining polynomial y^2 - 2, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 2 To: Algebraic Real Field Defn: a |--> 1.414213562373095?) sage: number_field_elements_from_algebraics((rt2,rt3)) (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, [-a^3 + 3*a, -a^2 + 2], Ring morphism: From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1 To: Algebraic Real Field Defn: a |--> 0.5176380902050415?)
rt3a
is a real number inQQbar
. Ordinarily, we’d get a homomorphism toAA
(because all elements are real), but if we specifysame_field=True
, we’ll get a homomorphism back toQQbar
:sage: number_field_elements_from_algebraics(rt3a) (Number Field in a with defining polynomial y^2 - 3, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 3 To: Algebraic Real Field Defn: a |--> 1.732050807568878?) sage: number_field_elements_from_algebraics(rt3a, same_field=True) (Number Field in a with defining polynomial y^2 - 3, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 3 To: Algebraic Field Defn: a |--> 1.732050807568878?)
We’ve created
rt2b
in such a way that sage does not initially know that it’s in a degree-2 extension of \(\QQ\):sage: number_field_elements_from_algebraics(rt2b) (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^3 + 3*a, Ring morphism: From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1 To: Algebraic Real Field Defn: a |--> 0.5176380902050415?)
We can specify
minimal=True
if we want the smallest number field:sage: number_field_elements_from_algebraics(rt2b, minimal=True) (Number Field in a with defining polynomial y^2 - 2, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 2 To: Algebraic Real Field Defn: a |--> 1.414213562373095?)
Things work fine with rational numbers, too:
sage: number_field_elements_from_algebraics((QQbar(1/2), AA(17))) (Rational Field, [1/2, 17], Ring morphism: From: Rational Field To: Algebraic Real Field Defn: 1 |--> 1)
Or we can just pass in symbolic expressions, as long as they can be coerced into
QQbar
:sage: number_field_elements_from_algebraics((sqrt(7), sqrt(9), sqrt(11))) (Number Field in a with defining polynomial y^4 - 9*y^2 + 1, [-a^3 + 8*a, 3, -a^3 + 10*a], Ring morphism: From: Number Field in a with defining polynomial y^4 - 9*y^2 + 1 To: Algebraic Real Field Defn: a |--> 0.3354367396454047?)
Here we see an example of doing some computations with number field elements, and then mapping them back into
QQbar
:sage: (fld,nums,hom) = number_field_elements_from_algebraics((rt2, rt3, qqI, z3)) sage: fld,nums,hom # random (Number Field in a with defining polynomial y^8 - y^4 + 1, [-a^5 + a^3 + a, a^6 - 2*a^2, a^6, -a^4], Ring morphism: From: Number Field in a with defining polynomial y^8 - y^4 + 1 To: Algebraic Field Defn: a |--> -0.2588190451025208? - 0.9659258262890683?*I) sage: (nfrt2, nfrt3, nfI, nfz3) = nums sage: hom(nfrt2) 1.414213562373095? + 0.?e-18*I sage: nfrt2^2 2 sage: nfrt3^2 3 sage: nfz3 + nfz3^2 -1 sage: nfI^2 -1 sage: sum = nfrt2 + nfrt3 + nfI + nfz3; sum 2*a^6 + a^5 - a^4 - a^3 - 2*a^2 - a sage: hom(sum) 2.646264369941973? + 1.866025403784439?*I sage: hom(sum) == rt2 + rt3 + qqI + z3 True sage: [hom(n) for n in nums] == [rt2, rt3, qqI, z3] True
It is also possible to have an embedded Number Field:
sage: x = polygen(ZZ) sage: my_num = AA.polynomial_root(x^3-2, RIF(0,3)) sage: res = number_field_elements_from_algebraics(my_num,embedded=True) sage: res[0].gen_embedding() 1.259921049894873? sage: res[2] Ring morphism: From: Number Field in a with defining polynomial y^3 - 2 with a = 1.259921049894873? To: Algebraic Real Field Defn: a |--> 1.259921049894873?
sage: nf,nums,hom = number_field_elements_from_algebraics([2^(1/3),3^(1/5)],embedded=True) sage: nf Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with a = 0.6866813218928813? sage: nums [a^10 - 5*a^5 + 2, -a^8 + 4*a^3] sage: hom Ring morphism: From: Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with a = 0.6866813218928813? To: Algebraic Real Field Defn: a |--> 0.6866813218928813?
Complex embeddings are possible as well:
sage: elems = [sqrt(5), 2^(1/3)+sqrt(3)*I, 3/4] sage: nf, nums, hom = number_field_elements_from_algebraics(elems, embedded=True) sage: nf Number Field in a with defining polynomial y^24 - 6*y^23 ...- 9*y^2 + 1 with a = 0.2598678911433438? + 0.0572892247058457?*I sage: list(map(QQbar, nums)) == elems == list(map(hom, nums)) True
- sage.rings.qqbar.prec_seq()¶
Return a generator object which iterates over an infinite increasing sequence of precisions to be tried in various numerical computations.
Currently just returns powers of 2 starting at 64.
EXAMPLES:
sage: g = sage.rings.qqbar.prec_seq() sage: [next(g), next(g), next(g)] [64, 128, 256]
- sage.rings.qqbar.rational_exact_root(r, d)¶
Check whether the rational \(r\) is an exact \(d\)’th power.
If so, this returns the \(d\)’th root of \(r\); otherwise, this returns
None
.EXAMPLES:
sage: from sage.rings.qqbar import rational_exact_root sage: rational_exact_root(16/81, 4) 2/3 sage: rational_exact_root(8/81, 3) is None True
- sage.rings.qqbar.short_prec_seq()¶
Return a sequence of precisions to try in cases when an infinite-precision computation is possible: returns a couple of small powers of 2 and then
None
.EXAMPLES:
sage: from sage.rings.qqbar import short_prec_seq sage: short_prec_seq() (64, 128, None)
- sage.rings.qqbar.t1¶
alias of
sage.rings.qqbar.ANBinaryExpr
- sage.rings.qqbar.t2¶
alias of
sage.rings.qqbar.ANRoot
- sage.rings.qqbar.tail_prec_seq()¶
A generator over precisions larger than those in
short_prec_seq()
.EXAMPLES:
sage: from sage.rings.qqbar import tail_prec_seq sage: g = tail_prec_seq() sage: [next(g), next(g), next(g)] [256, 512, 1024]