\(p\)-Adic Generic Nodes¶
This file contains a bunch of intermediate classes for the \(p\)-adic parents, allowing a function to be implemented at the right level of generality.
AUTHORS:
David Roe
- class sage.rings.padics.generic_nodes.CappedAbsoluteGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.local_generic.LocalGeneric
- is_capped_absolute()¶
Return whether this \(p\)-adic ring bounds precision in a capped absolute fashion.
The absolute precision of an element is the power of \(p\) modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.
EXAMPLES:
sage: R = ZpCA(5, 15) sage: R.is_capped_absolute() True sage: R(5^7) 5^7 + O(5^15) sage: S = Zp(5, 15) sage: S.is_capped_absolute() False sage: S(5^7) 5^7 + O(5^22)
- class sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.CappedRelativeGeneric
- class sage.rings.padics.generic_nodes.CappedRelativeGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.local_generic.LocalGeneric
- is_capped_relative()¶
Return whether this \(p\)-adic ring bounds precision in a capped relative fashion.
The relative precision of an element is the power of p modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.
EXAMPLES:
sage: R = ZpCA(5, 15) sage: R.is_capped_relative() False sage: R(5^7) 5^7 + O(5^15) sage: S = Zp(5, 15) sage: S.is_capped_relative() True sage: S(5^7) 5^7 + O(5^22)
- class sage.rings.padics.generic_nodes.CappedRelativeRingGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.CappedRelativeGeneric
- class sage.rings.padics.generic_nodes.FixedModGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.local_generic.LocalGeneric
- is_fixed_mod()¶
Return whether this \(p\)-adic ring bounds precision in a fixed modulus fashion.
The absolute precision of an element is the power of p modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This means that some operations, such as division by \(p\), don’t return a well defined answer.
EXAMPLES:
sage: R = ZpFM(5,15) sage: R.is_fixed_mod() True sage: R(5^7,absprec=9) 5^7 sage: S = ZpCA(5, 15) sage: S.is_fixed_mod() False sage: S(5^7,absprec=9) 5^7 + O(5^9)
- class sage.rings.padics.generic_nodes.FloatingPointFieldGeneric(base, prec, names, element_class, category=None)¶
- class sage.rings.padics.generic_nodes.FloatingPointGeneric(base, prec, names, element_class, category=None)¶
Bases:
sage.rings.padics.local_generic.LocalGeneric
- is_floating_point()¶
Return whether this \(p\)-adic ring uses a floating point precision model.
Elements in the floating point model are stored by giving a valuation and a unit part. Arithmetic is done where the unit part is truncated modulo a fixed power of the uniformizer, stored in the precision cap of the parent.
EXAMPLES:
sage: R = ZpFP(5,15) sage: R.is_floating_point() True sage: R(5^7,absprec=9) 5^7 sage: S = ZpCR(5,15) sage: S.is_floating_point() False sage: S(5^7,absprec=9) 5^7 + O(5^9)
- class sage.rings.padics.generic_nodes.FloatingPointRingGeneric(base, prec, names, element_class, category=None)¶
- sage.rings.padics.generic_nodes.is_pAdicField(R)¶
Return
True
if and only ifR
is a \(p\)-adic field.EXAMPLES:
sage: is_pAdicField(Zp(17)) False sage: is_pAdicField(Qp(17)) True
- sage.rings.padics.generic_nodes.is_pAdicRing(R)¶
Return
True
if and only ifR
is a \(p\)-adic ring (not a field).EXAMPLES:
sage: is_pAdicRing(Zp(5)) True sage: is_pAdicRing(RR) False
- class sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicRingGeneric
,sage.rings.padics.generic_nodes.CappedAbsoluteGeneric
- class sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicFieldGeneric
,sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric
- class sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicRingGeneric
,sage.rings.padics.generic_nodes.CappedRelativeRingGeneric
- class sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric(p, prec, print_mode, names, element_class)¶
Bases:
sage.rings.padics.padic_base_generic.pAdicBaseGeneric
,sage.rings.padics.generic_nodes.pAdicFieldGeneric
- composite(subfield1, subfield2)¶
Return the composite of two subfields of self, i.e., the largest subfield containing both
INPUT:
self
– a \(p\)-adic fieldsubfield1
– a subfieldsubfield2
– a subfield
OUTPUT:
the composite of subfield1 and subfield2
EXAMPLES:
sage: K = Qp(17); K.composite(K, K) is K True
- construction(forbid_frac_field=False)¶
Return the functorial construction of
self
, namely, completion of the rational numbers with respect a given prime.Also preserves other information that makes this field unique (e.g. precision, rounding, print mode).
INPUT:
forbid_frac_field
– require a completion functor rather than a fraction field functor. This is used in thesage.rings.padics.local_generic.LocalGeneric.change()
method.
EXAMPLES:
sage: K = Qp(17, 8, print_mode='val-unit', print_sep='&') sage: c, L = K.construction(); L 17-adic Ring with capped relative precision 8 sage: c FractionField sage: c(L) 17-adic Field with capped relative precision 8 sage: K == c(L) True
We can get a completion functor by forbidding the fraction field:
sage: c, L = K.construction(forbid_frac_field=True); L Rational Field sage: c Completion[17, prec=8] sage: c(L) 17-adic Field with capped relative precision 8 sage: K == c(L) True
- subfield(list)¶
Return the subfield generated by the elements in list
INPUT:
self
– a \(p\)-adic fieldlist
– a list of elements ofself
OUTPUT:
the subfield of
self
generated by the elements of list
EXAMPLES:
sage: K = Qp(17); K.subfield([K(17), K(1827)]) is K True
- subfields_of_degree(n)¶
Return the number of subfields of self of degree \(n\)
INPUT:
self
– a \(p\)-adic fieldn
– an integer
OUTPUT:
integer – the number of subfields of degree
n
over self.base_ring()
EXAMPLES:
sage: K = Qp(17) sage: K.subfields_of_degree(1) 1
- class sage.rings.padics.generic_nodes.pAdicFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.padic_generic.pAdicGeneric
,sage.rings.ring.Field
- class sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicRingGeneric
,sage.rings.padics.generic_nodes.FixedModGeneric
- class sage.rings.padics.generic_nodes.pAdicFloatingPointFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicFieldGeneric
,sage.rings.padics.generic_nodes.FloatingPointFieldGeneric
- class sage.rings.padics.generic_nodes.pAdicFloatingPointRingGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.generic_nodes.pAdicRingGeneric
,sage.rings.padics.generic_nodes.FloatingPointRingGeneric
- class sage.rings.padics.generic_nodes.pAdicLatticeGeneric(p, prec, print_mode, names, label=None)¶
Bases:
sage.rings.padics.padic_generic.pAdicGeneric
An implementation of the \(p\)-adic rationals with lattice precision.
INPUT:
\(p\) – the underlying prime number
prec
– the precisionsubtype
– either"cap"
or"float"
, specifying the precision model used for tracking precisionlabel
– a string orNone
(default:None
)
- convert_multiple(*elts)¶
Convert a list of elements to this parent.
NOTE:
This function tries to be sharp on precision as much as possible. In particular, if the precision of the input elements are handled by a lattice, diffused digits of precision are preserved during the conversion.
EXAMPLES:
sage: R = ZpLC(2) sage: x = R(1, 10); y = R(1, 5) sage: x,y = x+y, x-y
Remark that the pair \((x,y)\) has diffused digits of precision:
sage: x 2 + O(2^5) sage: y O(2^5) sage: x + y 2 + O(2^11) sage: R.precision().diffused_digits([x,y]) 6
As a consequence, if we convert
x
andy
separately, we loose some precision:sage: R2 = ZpLC(2, label='copy') sage: x2 = R2(x); y2 = R2(y) sage: x2 2 + O(2^5) sage: y2 O(2^5) sage: x2 + y2 2 + O(2^5) sage: R2.precision().diffused_digits([x2,y2]) 0
On the other hand, this issue disappears when we use multiple conversion:
sage: x2,y2 = R2.convert_multiple(x,y) sage: x2 + y2 2 + O(2^11) sage: R2.precision().diffused_digits([x2,y2]) 6
- is_lattice_prec()¶
Return whether this \(p\)-adic ring bounds precision using a lattice model.
In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.
EXAMPLES:
sage: R = ZpCR(5, 15) sage: R.is_lattice_prec() False sage: x = R(25, 8) sage: x - x O(5^8) sage: S = ZpLC(5, 15) sage: S.is_lattice_prec() True sage: x = S(25, 8) sage: x - x O(5^30)
- label()¶
Return the label of this parent.
NOTE:
Labels can be used to distinguish between parents with the same defining data.
They are useful in the lattice precision framework in order to limit the size of the lattice modeling the precision (which is roughly the number of elements having this parent).
Elements of a parent with some label do not coerce to a parent with a different label. However conversions are allowed.
EXAMPLES:
sage: R = ZpLC(5) sage: R.label() # no label by default sage: R = ZpLC(5, label='mylabel') sage: R.label() 'mylabel'
Labels are typically useful to isolate computations. For example, assume that we first want to do some calculations with matrices:
sage: R = ZpLC(5, label='matrices') sage: M = random_matrix(R, 4, 4) sage: d = M.determinant()
Now, if we want to do another unrelated computation, we can use a different label:
sage: R = ZpLC(5, label='polynomials') sage: S.<x> = PolynomialRing(R) sage: P = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
Without labels, the software would have modeled the precision on the matrices and on the polynomials using the same lattice (manipulating a lattice of higher dimension can have a significant impact on performance).
- precision()¶
Return the lattice precision object attached to this parent.
EXAMPLES:
sage: R = ZpLC(5, label='precision') sage: R.precision() Precision lattice on 0 objects (label: precision) sage: x = R(1, 10); y = R(1, 5) sage: R.precision() Precision lattice on 2 objects (label: precision)
See also
sage.rings.padics.lattice_precision.PrecisionLattice
- precision_cap()¶
Return the relative precision cap for this ring if it is finite. Otherwise return the absolute precision cap.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap() 20 sage: R.precision_cap_relative() 20 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap() 20 sage: R.precision_cap_relative() +Infinity sage: R.precision_cap_absolute() 20
- precision_cap_absolute()¶
Return the absolute precision cap for this ring.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap_absolute() 40 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap_absolute() 20
See also
- precision_cap_relative()¶
Return the relative precision cap for this ring.
EXAMPLES:
sage: R = ZpLC(3) sage: R.precision_cap_relative() 20 sage: R = ZpLC(3, prec=(infinity,20)) sage: R.precision_cap_relative() +Infinity
See also
- class sage.rings.padics.generic_nodes.pAdicRelaxedGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.padic_generic.pAdicGeneric
Generic class for relaxed \(p\)-adics.
INPUT:
\(p\) – the underlying prime number
prec
– the default precision
- an_element(unbounded=False)¶
Return an element in this ring.
EXAMPLES:
sage: R = ZpER(7, prec=5) sage: R.an_element() 7 + O(7^5) sage: R.an_element(unbounded=True) 7 + ...
- default_prec()¶
Return the default precision of this relaxed \(p\)-adic ring.
The default precision is mostly used for printing: it is the number of digits which are printed for unbounded elements (that is elements having infinite absolute precision).
EXAMPLES:
sage: R = ZpER(5, print_mode="digits") sage: R.default_prec() 20 sage: R(1/17) ...34024323104201213403 sage: S = ZpER(5, prec=10, print_mode="digits") sage: S.default_prec() 10 sage: S(1/17) ...4201213403
- halting_prec()¶
Return the default halting precision of this relaxed \(p\)-adic ring.
The halting precision is the precision at which elements of this parent are compared (unless more digits have been previously computed). By default, it is twice the default precision.
EXAMPLES:
sage: R = ZpER(5, print_mode="digits") sage: R.halting_prec() 40
- is_relaxed()¶
Return whether this \(p\)-adic ring is relaxed.
EXAMPLES:
sage: R = Zp(5) sage: R.is_relaxed() False sage: S = ZpER(5) sage: S.is_relaxed() True
- is_secure()¶
Return
False
if this \(p\)-adic relaxed ring is not secure (i.e. if indistinguishable elements at the working precision are considered as equal);True
otherwise (in which case, an error is raised when equality cannot be decided).EXAMPLES:
sage: R = ZpER(5) sage: R.is_secure() False sage: x = R(20/21) sage: y = x + 5^50 sage: x == y True sage: S = ZpER(5, secure=True) sage: S.is_secure() True sage: x = S(20/21) sage: y = x + 5^50 sage: x == y Traceback (most recent call last): ... PrecisionError: unable to decide equality; try to bound precision
- precision_cap()¶
Return the precision cap of this \(p\)-adic ring, which is infinite in the case of relaxed rings.
EXAMPLES:
sage: R = ZpER(5) sage: R.precision_cap() +Infinity
- random_element(integral=False, prec=None)¶
Return a random element in this ring.
INPUT:
integral
– a boolean (default:False
); ifTrue
, return a random element in the ring of integers of this ringprec
– an integer orNone
(default:None
); if given, bound the precision of the output toprec
EXAMPLES:
sage: R = ZpER(5, prec=10)
By default, this method returns a unbounded element:
sage: a = R.random_element() sage: a # random 4 + 3*5 + 3*5^2 + 5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 5^7 + 5^9 + ... sage: a.precision_absolute() +Infinity
The precision can be bounded by passing in a precision:
sage: b = R.random_element(prec=15) sage: b # random 2 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + 3*5^8 + 3*5^9 + 4*5^10 + 5^11 + 4*5^12 + 5^13 + 2*5^14 + O(5^15) sage: b.precision_absolute() 15
- some_elements(unbounded=False)¶
Return a list of elements in this ring.
This is typically used for running generic tests (see
TestSuite
).EXAMPLES:
sage: R = ZpER(7, prec=5) sage: R.some_elements() [O(7^5), 1 + O(7^5), 7 + O(7^5), 7 + O(7^5), 1 + 5*7 + 3*7^2 + 6*7^3 + O(7^5), 7 + 6*7^2 + 6*7^3 + 6*7^4 + O(7^5)] sage: R.some_elements(unbounded=True) [0, 1 + ..., 7 + ..., 7 + ..., 1 + 5*7 + 3*7^2 + 6*7^3 + ..., 7 + 6*7^2 + 6*7^3 + 6*7^4 + ...]
- teichmuller(x)¶
Return the Teichmuller representative of \(x\).
EXAMPLES:
sage: R = ZpER(5, print_mode="digits") sage: R.teichmuller(2) ...40423140223032431212
- teichmuller_system()¶
Return a set of teichmuller representatives for the invertible elements of \(\ZZ / p\ZZ\).
EXAMPLES:
sage: R = ZpER(7, print_mode="digits") sage: R.teichmuller_system() [...00000000000000000001, ...16412125443426203642, ...16412125443426203643, ...50254541223240463024, ...50254541223240463025, ...66666666666666666666]
- unknown(start_val=0, digits=None)¶
Return a self-referent number in this ring.
INPUT:
start_val
– an integer (default: 0); a lower bound on the valuation of the returned elementdigits
– an element, a list orNone
(default:None
); the first digit or the list of the digits of the returned element
NOTE:
Self-referent numbers are numbers whose digits are defined in terms of the previous ones. This method is used to declare a self-referent number (and optionally, to set its first digits). The definition of the number itself will be given afterwords using to method meth:\(sage.rings.padics.relaxed_template.RelaxedElement_unknown.set\) of the element.
EXAMPLES:
sage: R = ZpER(5, prec=10)
We declare a self-referent number:
sage: a = R.unknown()
So far, we do not know anything on \(a\) (except that it has nonnegative valuation):
sage: a O(5^0)
We can now use the method meth:\(sage.rings.padics.relaxed_template.RelaxedElement_unknown.set\) to define \(a\). Below, for example, we say that the digits of \(a\) have to agree with the digits of \(1 + 5 a\). Note that the factor \(5\) shifts the digits; the \(n\)-th digit of \(a\) is then defined by the previous ones:
sage: a.set(1 + 5*a) True
After this, \(a\) contains the solution of the equation \(a = 1 + 5 a\), that is \(a = -1/4\):
sage: a 1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + ...
Here is another example with an equation of degree \(2\):
sage: b = R.unknown() sage: b.set(1 - 5*b^2) True sage: b 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ... sage: (sqrt(R(21)) - 1) / 10 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ...
Cross self-referent definitions are also allowed:
sage: u = R.unknown() sage: v = R.unknown() sage: w = R.unknown() sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w) True sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w)) True sage: w.set(3 + 25*(u*v + v*w + u*w)) True sage: u 3 + 3*5 + 4*5^2 + 5^3 + 3*5^4 + 5^5 + 5^6 + 3*5^7 + 5^8 + 3*5^9 + ... sage: v 4*5 + 2*5^2 + 4*5^3 + 5^4 + 5^5 + 3*5^6 + 5^8 + 5^9 + ... sage: w 3 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 5^8 + 5^9 + ...
- class sage.rings.padics.generic_nodes.pAdicRingBaseGeneric(p, prec, print_mode, names, element_class)¶
Bases:
sage.rings.padics.padic_base_generic.pAdicBaseGeneric
,sage.rings.padics.generic_nodes.pAdicRingGeneric
- construction(forbid_frac_field=False)¶
Return the functorial construction of self, namely, completion of the rational numbers with respect a given prime.
Also preserves other information that makes this field unique (e.g. precision, rounding, print mode).
INPUT:
forbid_frac_field
– ignored, for compatibility with other p-adic types.
EXAMPLES:
sage: K = Zp(17, 8, print_mode='val-unit', print_sep='&') sage: c, L = K.construction(); L Integer Ring sage: c(L) 17-adic Ring with capped relative precision 8 sage: K == c(L) True
- random_element(algorithm='default')¶
Return a random element of self, optionally using the algorithm argument to decide how it generates the element. Algorithms currently implemented:
default: Choose \(a_i\), \(i >= 0\), randomly between \(0\) and \(p-1\) until a nonzero choice is made. Then continue choosing \(a_i\) randomly between \(0\) and \(p-1\) until we reach precision_cap, and return \(\sum a_i p^i\).
EXAMPLES:
sage: Zp(5,6).random_element() 3 + 3*5 + 2*5^2 + 3*5^3 + 2*5^4 + 5^5 + O(5^6) sage: ZpCA(5,6).random_element() 4*5^2 + 5^3 + O(5^6) sage: ZpFM(5,6).random_element() 2 + 4*5^2 + 2*5^4 + 5^5
- class sage.rings.padics.generic_nodes.pAdicRingGeneric(base, p, prec, print_mode, names, element_class, category=None)¶
Bases:
sage.rings.padics.padic_generic.pAdicGeneric
,sage.rings.ring.EuclideanDomain
- is_field(proof=True)¶
Return whether this ring is actually a field, ie
False
.EXAMPLES:
sage: Zp(5).is_field() False
- krull_dimension()¶
Return the Krull dimension of self, i.e. 1
INPUT:
self – a \(p\)-adic ring
OUTPUT:
the Krull dimension of self. Since self is a \(p\)-adic ring, this is 1.
EXAMPLES:
sage: Zp(5).krull_dimension() 1