\(p\)-Adic Capped Relative Elements¶
Elements of \(p\)-Adic Rings with Capped Relative Precision
AUTHORS:
David Roe: initial version, rewriting to use templates (2012-3-1)
Genya Zaytman: documentation
David Harvey: doctests
- class sage.rings.padics.padic_capped_relative_element.CRElement¶
Bases:
sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement
- add_bigoh(absprec)¶
Returns a new element with absolute precision decreased to
absprec
.INPUT:
absprec
– an integer or infinity
OUTPUT:
an equal element with precision set to the minimum of
self's
precision andabsprec
EXAMPLES:
sage: R = Zp(7,4,'capped-rel','series'); a = R(8); a.add_bigoh(1) 1 + O(7) sage: b = R(0); b.add_bigoh(3) O(7^3) sage: R = Qp(7,4); a = R(8); a.add_bigoh(1) 1 + O(7) sage: b = R(0); b.add_bigoh(3) O(7^3) The precision never increases:: sage: R(4).add_bigoh(2).add_bigoh(4) 4 + O(7^2) Another example that illustrates that the precision does not increase:: sage: k = Qp(3,5) sage: a = k(1234123412/3^70); a 2*3^-70 + 3^-69 + 3^-68 + 3^-67 + O(3^-65) sage: a.add_bigoh(2) 2*3^-70 + 3^-69 + 3^-68 + 3^-67 + O(3^-65) sage: k = Qp(5,10) sage: a = k(1/5^3 + 5^2); a 5^-3 + 5^2 + O(5^7) sage: a.add_bigoh(2) 5^-3 + O(5^2) sage: a.add_bigoh(-1) 5^-3 + O(5^-1)
- is_equal_to(_right, absprec=None)¶
Returns whether self is equal to right modulo \(\pi^{\mbox{absprec}}\).
If
absprec is None
, returns True if self and right are equal to the minimum of their precisions.INPUT:
right
– a \(p\)-adic elementabsprec
– an integer, infinity, orNone
EXAMPLES:
sage: R = Zp(5, 10); a = R(0); b = R(0, 3); c = R(75, 5) sage: aa = a + 625; bb = b + 625; cc = c + 625 sage: a.is_equal_to(aa), a.is_equal_to(aa, 4), a.is_equal_to(aa, 5) (False, True, False) sage: a.is_equal_to(aa, 15) Traceback (most recent call last): ... PrecisionError: elements not known to enough precision sage: a.is_equal_to(a, 50000) True sage: a.is_equal_to(b), a.is_equal_to(b, 2) (True, True) sage: a.is_equal_to(b, 5) Traceback (most recent call last): ... PrecisionError: elements not known to enough precision sage: b.is_equal_to(b, 5) Traceback (most recent call last): ... PrecisionError: elements not known to enough precision sage: b.is_equal_to(bb, 3) True sage: b.is_equal_to(bb, 4) Traceback (most recent call last): ... PrecisionError: elements not known to enough precision sage: c.is_equal_to(b, 2), c.is_equal_to(b, 3) (True, False) sage: c.is_equal_to(b, 4) Traceback (most recent call last): ... PrecisionError: elements not known to enough precision sage: c.is_equal_to(cc, 2), c.is_equal_to(cc, 4), c.is_equal_to(cc, 5) (True, True, False)
- is_zero(absprec=None)¶
Determines whether this element is zero modulo \(\pi^{\mbox{absprec}}\).
If
absprec is None
, returnsTrue
if this element is indistinguishable from zero.INPUT:
absprec
– an integer, infinity, orNone
EXAMPLES:
sage: R = Zp(5); a = R(0); b = R(0,5); c = R(75) sage: a.is_zero(), a.is_zero(6) (True, True) sage: b.is_zero(), b.is_zero(5) (True, True) sage: c.is_zero(), c.is_zero(2), c.is_zero(3) (False, True, False) sage: b.is_zero(6) Traceback (most recent call last): ... PrecisionError: not enough precision to determine if element is zero
- polynomial(var='x')¶
Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.
INPUT:
var
– string, the variable name for the polynomial
EXAMPLES:
sage: K.<a> = Qq(5^3) sage: a.polynomial() (1 + O(5^20))*x + O(5^20) sage: a.polynomial(var='y') (1 + O(5^20))*y + O(5^20) sage: (5*a^2 + K(25, 4)).polynomial() (5 + O(5^4))*x^2 + O(5^4)*x + 5^2 + O(5^4)
- precision_absolute()¶
Returns the absolute precision of this element.
This is the power of the maximal ideal modulo which this element is defined.
EXAMPLES:
sage: R = Zp(7,3,'capped-rel'); a = R(7); a.precision_absolute() 4 sage: R = Qp(7,3); a = R(7); a.precision_absolute() 4 sage: R(7^-3).precision_absolute() 0 sage: R(0).precision_absolute() +Infinity sage: R(0,7).precision_absolute() 7
- precision_relative()¶
Returns the relative precision of this element.
This is the power of the maximal ideal modulo which the unit part of self is defined.
EXAMPLES:
sage: R = Zp(7,3,'capped-rel'); a = R(7); a.precision_relative() 3 sage: R = Qp(7,3); a = R(7); a.precision_relative() 3 sage: a = R(7^-2, -1); a.precision_relative() 1 sage: a 7^-2 + O(7^-1) sage: R(0).precision_relative() 0 sage: R(0,7).precision_relative() 0
- unit_part()¶
Returns \(u\), where this element is \(\pi^v u\).
EXAMPLES:
sage: R = Zp(17,4,'capped-rel') sage: a = R(18*17) sage: a.unit_part() 1 + 17 + O(17^4) sage: type(a) <type 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'> sage: R = Qp(17,4,'capped-rel') sage: a = R(18*17) sage: a.unit_part() 1 + 17 + O(17^4) sage: type(a) <type 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'> sage: a = R(2*17^2); a 2*17^2 + O(17^6) sage: a.unit_part() 2 + O(17^4) sage: b=1/a; b 9*17^-2 + 8*17^-1 + 8 + 8*17 + O(17^2) sage: b.unit_part() 9 + 8*17 + 8*17^2 + 8*17^3 + O(17^4) sage: Zp(5)(75).unit_part() 3 + O(5^20) sage: R(0).unit_part() Traceback (most recent call last): ... ValueError: unit part of 0 not defined sage: R(0,7).unit_part() O(17^0)
- val_unit(p=None)¶
Returns a pair
(self.valuation(), self.unit_part())
.INPUT:
p
– a prime (default:None
). If specified, will make sure that p==self.parent().prime()
Note
The optional argument
p
is used for consistency with the valuation methods on integer and rational.EXAMPLES:
sage: R = Zp(5); a = R(75, 20); a 3*5^2 + O(5^20) sage: a.val_unit() (2, 3 + O(5^18)) sage: R(0).val_unit() Traceback (most recent call last): ... ValueError: unit part of 0 not defined sage: R(0, 10).val_unit() (10, O(5^0))
- class sage.rings.padics.padic_capped_relative_element.ExpansionIter¶
Bases:
object
An iterator over a \(p\)-adic expansion.
This class should not be instantiated directly, but instead using
expansion()
.INPUT:
elt
– the \(p\)-adic elementprec
– the number of terms to be emittedmode
– eithersimple_mode
,smallest_mode
orteichmuller_mode
EXAMPLES:
sage: E = Zp(5,4)(373).expansion() sage: I = iter(E) # indirect doctest sage: type(I) <type 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
- class sage.rings.padics.padic_capped_relative_element.ExpansionIterable¶
Bases:
object
An iterable storing a \(p\)-adic expansion of an element.
This class should not be instantiated directly, but instead using
expansion()
.INPUT:
elt
– the \(p\)-adic elementprec
– the number of terms to be emittedval_shift
– how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)mode
– one of the following:'simple_mode'
'smallest_mode'
'teichmuller_mode'
EXAMPLES:
sage: E = Zp(5,4)(373).expansion() # indirect doctest sage: type(E) <type 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
- class sage.rings.padics.padic_capped_relative_element.PowComputer_¶
Bases:
sage.rings.padics.pow_computer.PowComputer_base
A PowComputer for a capped-relative padic ring or field.
- sage.rings.padics.padic_capped_relative_element.base_p_list(n, pos, prime_pow)¶
Return a base-\(p\) list of digits of
n
.INPUT:
n
– a positiveInteger
pos
– a boolean; ifTrue
, then returns the standard base \(p\) expansion, otherwise the digits lie in the range \(-p/2\) to \(p/2\).prime_pow
– aPowComputer
giving the prime
EXAMPLES:
sage: from sage.rings.padics.padic_capped_relative_element import base_p_list sage: base_p_list(192837, True, Zp(5).prime_pow) [2, 2, 3, 2, 3, 1, 2, 2] sage: 2 + 2*5 + 3*5^2 + 2*5^3 + 3*5^4 + 5^5 + 2*5^6 + 2*5^7 192837 sage: base_p_list(192837, False, Zp(5).prime_pow) [2, 2, -2, -2, -1, 2, 2, 2] sage: 2 + 2*5 - 2*5^2 - 2*5^3 - 5^4 + 2*5^5 + 2*5^6 + 2*5^7 192837
- class sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement¶
Bases:
sage.rings.padics.padic_capped_relative_element.CRElement
Constructs new element with given parent and value.
INPUT:
x
– value to coerce into a capped relative ring or fieldabsprec
– maximum number of digits of absolute precisionrelprec
– maximum number of digits of relative precision
EXAMPLES:
sage: R = Zp(5, 10, 'capped-rel')
Construct from integers:
sage: R(3) 3 + O(5^10) sage: R(75) 3*5^2 + O(5^12) sage: R(0) 0 sage: R(-1) 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^10) sage: R(-5) 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + O(5^11) sage: R(-7*25) 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11 + O(5^12)
Construct from rationals:
sage: R(1/2) 3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9 + O(5^10) sage: R(-7875/874) 3*5^3 + 2*5^4 + 2*5^5 + 5^6 + 3*5^7 + 2*5^8 + 3*5^10 + 3*5^11 + 3*5^12 + O(5^13) sage: R(15/425) Traceback (most recent call last): ... ValueError: p divides the denominator
Construct from IntegerMod:
sage: R(Integers(125)(3)) 3 + O(5^3) sage: R(Integers(5)(3)) 3 + O(5) sage: R(Integers(5^30)(3)) 3 + O(5^10) sage: R(Integers(5^30)(1+5^23)) 1 + O(5^10) sage: R(Integers(49)(3)) Traceback (most recent call last): ... TypeError: p does not divide modulus 49
sage: R(Integers(48)(3)) Traceback (most recent call last): ... TypeError: p does not divide modulus 48
Some other conversions:
sage: R(R(5)) 5 + O(5^11)
Construct from Pari objects:
sage: R = Zp(5) sage: x = pari(123123) ; R(x) 3 + 4*5 + 4*5^2 + 4*5^3 + 5^4 + 4*5^5 + 2*5^6 + 5^7 + O(5^20) sage: R(pari(R(5252))) 2 + 2*5^3 + 3*5^4 + 5^5 + O(5^20) sage: R = Zp(5,prec=5) sage: R(pari(-1)) 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5) sage: pari(R(-1)) 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5) sage: pari(R(0)) 0 sage: R(pari(R(0,5))) O(5^5)
Todo
doctests for converting from other types of p-adic rings
- lift()¶
Return an integer or rational congruent to
self
moduloself
’s precision. If a rational is returned, its denominator will equalp^ordp(self)
.EXAMPLES:
sage: R = Zp(7,4,'capped-rel'); a = R(8); a.lift() 8 sage: R = Qp(7,4); a = R(8); a.lift() 8 sage: R = Qp(7,4); a = R(8/7); a.lift() 8/7
- residue(absprec=1, field=None, check_prec=True)¶
Reduce this element modulo \(p^{\mathrm{absprec}}\).
INPUT:
absprec
– a non-negative integer (default:1
)field
– boolean (defaultNone
); whether to return an element of \(\GF{p}\) or \(\ZZ / p\ZZ\)check_prec
– boolean (defaultTrue
); whether to raise an error if this element has insufficient precision to determine the reduction
OUTPUT:
This element reduced modulo \(p^\mathrm{absprec}\) as an element of \(\ZZ/p^\mathrm{absprec}\ZZ\).
EXAMPLES:
sage: R = Zp(7,4) sage: a = R(8) sage: a.residue(1) 1
This is different from applying
% p^n
which returns an element in the same ring:sage: b = a.residue(2); b 8 sage: b.parent() Ring of integers modulo 49 sage: c = a % 7^2; c 1 + 7 + O(7^4) sage: c.parent() 7-adic Ring with capped relative precision 4
For elements in a field, application of
% p^n
always returns zero, the remainder of the division byp^n
:sage: K = Qp(7,4) sage: a = K(8) sage: a.residue(2) 8 sage: a % 7^2 1 + 7 + O(7^4) sage: b = K(1/7) sage: b.residue() Traceback (most recent call last): ... ValueError: element must have non-negative valuation in order to compute residue
See also
_mod_()
- class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field¶
Bases:
sage.rings.morphism.RingHomomorphism
The canonical inclusion of Zq into its fraction field.
EXAMPLES:
sage: R.<a> = ZqCR(27, implementation='FLINT') sage: K = R.fraction_field() sage: f = K.coerce_map_from(R); f Ring morphism: From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
- is_injective()¶
Return whether this map is injective.
EXAMPLES:
sage: R.<a> = ZqCR(9, implementation='FLINT') sage: K = R.fraction_field() sage: f = K.coerce_map_from(R) sage: f.is_injective() True
- is_surjective()¶
Return whether this map is surjective.
EXAMPLES:
sage: R.<a> = ZqCR(9, implementation='FLINT') sage: K = R.fraction_field() sage: f = K.coerce_map_from(R) sage: f.is_surjective() False
- section()¶
Returns a map back to the ring that converts elements of non-negative valuation.
EXAMPLES:
sage: R.<a> = ZqCR(27, implementation='FLINT') sage: K = R.fraction_field() sage: f = K.coerce_map_from(R) sage: f(K.gen()) a + O(3^20) sage: f.section() Generic morphism: From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
- class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_QQ_CR¶
Bases:
sage.rings.morphism.RingHomomorphism
The canonical inclusion from the rationals to a capped relative field.
EXAMPLES:
sage: f = Qp(5).coerce_map_from(QQ); f Ring morphism: From: Rational Field To: 5-adic Field with capped relative precision 20
- section()¶
Returns a map back to the rationals that approximates an element by a rational number.
EXAMPLES:
sage: f = Qp(5).coerce_map_from(QQ).section() sage: f(Qp(5)(1/4)) 1/4 sage: f(Qp(5)(1/5)) 1/5
- class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_ZZ_CR¶
Bases:
sage.rings.morphism.RingHomomorphism
The canonical inclusion from the integer ring to a capped relative ring.
EXAMPLES:
sage: f = Zp(5).coerce_map_from(ZZ); f Ring morphism: From: Integer Ring To: 5-adic Ring with capped relative precision 20
- section()¶
Returns a map back to the ring of integers that approximates an element by an integer.
EXAMPLES:
sage: f = Zp(5).coerce_map_from(ZZ).section() sage: f(Zp(5)(-1)) - 5^20 -1
- class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_QQ¶
Bases:
sage.rings.morphism.RingMap
The map from the capped relative ring back to the rationals that returns a rational approximation of its input.
EXAMPLES:
sage: f = Qp(5).coerce_map_from(QQ).section(); f Set-theoretic ring morphism: From: 5-adic Field with capped relative precision 20 To: Rational Field
- class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_ZZ¶
Bases:
sage.rings.morphism.RingMap
The map from a capped relative ring back to the ring of integers that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.
Raises a
ValueError
, if the input is not in the closure of the image of the integers.EXAMPLES:
sage: f = Zp(5).coerce_map_from(ZZ).section(); f Set-theoretic ring morphism: From: 5-adic Ring with capped relative precision 20 To: Integer Ring
- class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_frac_field¶
Bases:
sage.categories.morphism.Morphism
The section of the inclusion from \(\ZZ_q\) to its fraction field.
EXAMPLES:
sage: R.<a> = ZqCR(27, implementation='FLINT') sage: K = R.fraction_field() sage: f = R.convert_map_from(K); f Generic morphism: From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
- class sage.rings.padics.padic_capped_relative_element.pAdicConvert_QQ_CR¶
Bases:
sage.categories.morphism.Morphism
The inclusion map from the rationals to a capped relative ring that is defined on all elements with non-negative \(p\)-adic valuation.
EXAMPLES:
sage: f = Zp(5).convert_map_from(QQ); f Generic morphism: From: Rational Field To: 5-adic Ring with capped relative precision 20
- section()¶
Returns the map back to the rationals that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.
EXAMPLES:
sage: f = Zp(5,4).convert_map_from(QQ).section() sage: f(Zp(5,4)(-1)) -1
- class sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement¶
Bases:
sage.rings.padics.padic_generic_element.pAdicGenericElement
A class for common functionality among the \(p\)-adic template classes.
INPUT:
parent
– a local ring or fieldx
– data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod \(p^k\) and other Sage p-adics.absprec
– a cap on the absolute precision of this elementrelprec
– a cap on the relative precision of this element
EXAMPLES:
sage: Zp(17)(17^3, 8, 4) 17^3 + O(17^7)
- expansion(n=None, lift_mode='simple', start_val=None)¶
Return the coefficients in a \(\pi\)-adic expansion. If this is a field element, start at \(\pi^{\mbox{valuation}}\), if a ring element at \(\pi^0\).
For each lift mode, this function returns a list of \(a_i\) so that this element can be expressed as
\[\pi^v \cdot \sum_{i=0}^\infty a_i \pi^i,\]where \(v\) is the valuation of this element when the parent is a field, and \(v = 0\) otherwise.
Different lift modes affect the choice of \(a_i\). When
lift_mode
is'simple'
, the resulting \(a_i\) will be non-negative: if the residue field is \(\GF{p}\) then they will be integers with \(0 \le a_i < p\); otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.Choosing
lift_mode
as'smallest'
is similar to'simple'
, but uses a balanced representation \(-p/2 < a_i \le p/2\).Finally, setting
lift_mode = 'teichmuller'
will yield Teichmuller representatives for the \(a_i\): \(a_i^q = a_i\). In this case the \(a_i\) will lie in the ring of integers of the maximal unramified subextension of the parent of this element.INPUT:
n
– integer (defaultNone
). If given, returns the corresponding entry in the expansion. Can also accept a slice (seeslice()
)lift_mode
–'simple'
,'smallest'
or'teichmuller'
(default:'simple'
)start_val
– start at this valuation rather than the default (\(0\) or the valuation of this element).
OUTPUT:
If
n
isNone
, an iterable giving a \(\pi\)-adic expansion of this element. For base elements the contents will be integers iflift_mode
is'simple'
or'smallest'
, and elements ofself.parent()
iflift_mode
is'teichmuller'
.If
n
is an integer, the coefficient of \(\pi^n\) in the \(\pi\)-adic expansion of this element.
Note
Use slice operators to get a particular range.
EXAMPLES:
sage: R = Zp(7,6); a = R(12837162817); a 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) sage: E = a.expansion(); E 7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) sage: list(E) [3, 4, 4, 0, 4, 0] sage: sum([c * 7^i for i, c in enumerate(E)]) == a True sage: E = a.expansion(lift_mode='smallest'); E 7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced) sage: list(E) [3, -3, -2, 1, -3, 1] sage: sum([c * 7^i for i, c in enumerate(E)]) == a True sage: E = a.expansion(lift_mode='teichmuller'); E 7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller) sage: list(E) [3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6), 0, 5 + 2*7 + 3*7^3 + O(7^4), 1 + O(7^3), 3 + 4*7 + O(7^2), 5 + O(7)] sage: sum(c * 7^i for i, c in enumerate(E)) 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
If the element has positive valuation then the list will start with some zeros:
sage: a = R(7^3 * 17) sage: E = a.expansion(); E 7-adic expansion of 3*7^3 + 2*7^4 + O(7^9) sage: list(E) [0, 0, 0, 3, 2, 0, 0, 0, 0]
The expansion of 0 is truncated:
sage: E = R(0, 7).expansion(); E 7-adic expansion of O(7^7) sage: len(E) 0 sage: list(E) []
In fields, on the other hand, the expansion starts at the valuation:
sage: R = Qp(7,4); a = R(6*7+7**2); E = a.expansion(); E 7-adic expansion of 6*7 + 7^2 + O(7^5) sage: list(E) [6, 1, 0, 0] sage: list(a.expansion(lift_mode='smallest')) [-1, 2, 0, 0] sage: list(a.expansion(lift_mode='teichmuller')) [6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4), 2 + 4*7 + 6*7^2 + O(7^3), 3 + 4*7 + O(7^2), 3 + O(7)]
You can ask for a specific entry in the expansion:
sage: a.expansion(1) 6 sage: a.expansion(1, lift_mode='smallest') -1 sage: a.expansion(2, lift_mode='teichmuller') 2 + 4*7 + 6*7^2 + O(7^3)
- lift_to_precision(absprec=None)¶
Return another element of the same parent with absolute precision at least
absprec
, congruent to this \(p\)-adic element modulo the precision of this element.INPUT:
absprec
– an integer orNone
(default:None
); the absolute precision of the result. IfNone
, lifts to the maximum precision allowed
Note
If setting
absprec
that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.EXAMPLES:
sage: R = ZpCA(17) sage: R(-1,2).lift_to_precision(10) 16 + 16*17 + O(17^10) sage: R(1,15).lift_to_precision(10) 1 + O(17^15) sage: R(1,15).lift_to_precision(30) Traceback (most recent call last): ... PrecisionError: precision higher than allowed by the precision cap sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap() True sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8) 2 + 3*5 + O(5^8) sage: c.lift_to_precision().precision_relative() == R.precision_cap() True
Fixed modulus elements don’t raise errors:
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7) 5 sage: a.lift_to_precision(10000) 5
- residue(absprec=1, field=None, check_prec=True)¶
Reduce this element modulo \(p^\mathrm{absprec}\).
INPUT:
absprec
–0
or1
.field
– boolean (defaultNone
). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.check_prec
– boolean (defaultTrue
). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.
OUTPUT:
This element reduced modulo \(p^\mathrm{absprec}\) as an element of the residue field or the null ring.
EXAMPLES:
sage: R.<a> = Zq(27, 4) sage: (3 + 3*a).residue() 0 sage: (a + 1).residue() a0 + 1
- teichmuller_expansion(n=None)¶
Returns an iterator over coefficients \(a_0, a_1, \dots, a_n\) such that
\(a_i^q = a_i\), where \(q\) is the cardinality of the residue field,
this element can be expressed as
\[\pi^v \cdot \sum_{i=0}^\infty a_i \pi^i\]where \(v\) is the valuation of this element when the parent is a field, and \(v = 0\) otherwise.
if \(a_i \ne 0\), the precision of \(a_i\) is \(i\) less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)
Note
The coefficients will lie in the ring of integers of the maximal unramified subextension.
INPUT:
n
– integer (defaultNone
). If given, returns the coefficient of \(\pi^n\) in the expansion.
EXAMPLES:
For fields, the expansion starts at the valuation:
sage: R = Qp(5,5); list(R(70).teichmuller_expansion()) [4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5), 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4), 2 + 5 + 2*5^2 + O(5^3), 1 + O(5^2), 4 + O(5)]
But if you specify
n
, you get the coefficient of \(\pi^n\):sage: R(70).teichmuller_expansion(2) 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
- unit_part()¶
Returns the unit part of this element.
This is the \(p\)-adic element \(u\) in the same ring so that this element is \(\pi^v u\), where \(\pi\) is a uniformizer and \(v\) is the valuation of this element.
EXAMPLES:
sage: R.<a> = Zq(125) sage: (5*a).unit_part() a + O(5^20)
- sage.rings.padics.padic_capped_relative_element.unpickle_cre_v2(cls, parent, unit, ordp, relprec)¶
Unpickles a capped relative element.
EXAMPLES:
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_cre_v2 sage: R = Zp(5); a = R(85,6) sage: b = unpickle_cre_v2(a.__class__, R, 17, 1, 5) sage: a == b True sage: a.precision_relative() == b.precision_relative() True
- sage.rings.padics.padic_capped_relative_element.unpickle_pcre_v1(R, unit, ordp, relprec)¶
Unpickles a capped relative element.
EXAMPLES:
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_pcre_v1 sage: R = Zp(5) sage: a = unpickle_pcre_v1(R, 17, 2, 5); a 2*5^2 + 3*5^3 + O(5^7)