p-Adic Extension Generic¶
A common superclass for all extensions of Qp and Zp.
AUTHORS:
David Roe
- class sage.rings.padics.padic_extension_generic.DefPolyConversion¶
Bases:
sage.categories.morphism.Morphism
Conversion map between p-adic rings/fields with the same defining polynomial.
INPUT:
R
– a p-adic extension ring or field.S
– a p-adic extension ring or field with the same defining polynomial.
EXAMPLES:
sage: R.<a> = Zq(125, print_mode='terse') sage: S = R.change(prec = 15, type='floating-point') sage: a - 1 95367431640624 + a + O(5^20) sage: S(a - 1) 30517578124 + a + O(5^15)
sage: R.<a> = Zq(125, print_mode='terse') sage: S = R.change(prec = 15, type='floating-point') sage: f = S.convert_map_from(R) sage: TestSuite(f).run()
- class sage.rings.padics.padic_extension_generic.MapFreeModuleToOneStep¶
Bases:
sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism
The isomorphism from the underlying module of a one-step p-adic extension to the extension.
EXAMPLES:
sage: K.<a> = Qq(125) sage: V, fr, to = K.free_module() sage: TestSuite(fr).run(skip=['_test_nonzero_equal']) # skipped since Qq(125) doesn't have dimension()
- class sage.rings.padics.padic_extension_generic.MapFreeModuleToTwoStep¶
Bases:
sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism
The isomorphism from the underlying module of a two-step p-adic extension to the extension.
EXAMPLES:
sage: K.<a> = Qq(125) sage: R.<x> = ZZ[] sage: L.<b> = K.extension(x^2 - 5*x + 5) sage: V, fr, to = L.free_module(base=Qp(5)) sage: TestSuite(fr).run(skip=['_test_nonzero_equal']) # skipped since L doesn't have dimension()
- class sage.rings.padics.padic_extension_generic.MapOneStepToFreeModule¶
Bases:
sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism
The isomorphism from a one-step p-adic extension to its underlying free module
EXAMPLES:
sage: K.<a> = Qq(125) sage: V, fr, to = K.free_module() sage: TestSuite(to).run()
- class sage.rings.padics.padic_extension_generic.MapTwoStepToFreeModule¶
Bases:
sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism
The isomorphism from a two-step p-adic extension to its underlying free module
EXAMPLES:
sage: K.<a> = Qq(125) sage: R.<x> = ZZ[] sage: L.<b> = K.extension(x^2 - 5*x + 5) sage: V, fr, to = L.free_module(base=Qp(5)) sage: TestSuite(to).run()
- class sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric(poly, prec, print_mode, names, element_class)¶
Bases:
sage.rings.padics.padic_generic.pAdicGeneric
Initialization
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) #indirect doctest
- construction(forbid_frac_field=False)¶
Returns the functorial construction of this ring, namely, the algebraic extension of the base ring defined by the given polynomial.
Also preserves other information that makes this ring unique (e.g. precision, rounding, print mode).
INPUT:
forbid_frac_field
– require a completion functor rather than a fraction field functor. This is used in thesage.rings.padics.local_generic.LocalGeneric.change()
method.
EXAMPLES:
sage: R.<a> = Zq(25, 8, print_mode='val-unit') sage: c, R0 = R.construction(); R0 5-adic Ring with capped relative precision 8 sage: c(R0) 5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2 sage: c(R0) == R True
For a field, by default we return a fraction field functor.
sage: K.<a> = Qq(25, 8) sage: c, R = K.construction(); R 5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2 sage: c FractionField
If you prefer an extension functor, you can use the
forbit_frac_field
keyword:sage: c, R = K.construction(forbid_frac_field=True); R 5-adic Field with capped relative precision 8 sage: c AlgebraicExtensionFunctor sage: c(R) is K True
- defining_polynomial(var=None, exact=False)¶
Returns the polynomial defining this extension.
INPUT:
var
– string (default:'x'
), the name of the variableexact
– boolean (defaultFalse
), whether to return the underlying exactdefining polynomial rather than the one with coefficients in the base ring.
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5 sage: W.<w> = R.ext(f) sage: W.defining_polynomial() (1 + O(5^5))*x^5 + O(5^6)*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6) sage: W.defining_polynomial(exact=True) x^5 + 75*x^3 - 15*x^2 + 125*x - 5 sage: W.defining_polynomial(var='y', exact=True) y^5 + 75*y^3 - 15*y^2 + 125*y - 5
See also
- exact_field()¶
Return a number field with the same defining polynomial.
Note that this method always returns a field, even for a \(p\)-adic ring.
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: W.exact_field() Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5
See also
- exact_ring()¶
Return the order with the same defining polynomial.
Will raise a ValueError if the coefficients of the defining polynomial are not integral.
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: W.exact_ring() Order in Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5 sage: T = Zp(5,5) sage: U.<z> = T[] sage: g = 2*z^4 + 1 sage: V.<v> = T.ext(g) sage: V.exact_ring() Traceback (most recent call last): ... ValueError: each generator must be integral
- free_module(base=None, basis=None, map=True)¶
Return a free module \(V\) over a specified base ring together with maps to and from \(V\).
INPUT:
base
– a subring \(R\) so that this ring/field is isomorphic to a finite-rank free \(R\)-module \(V\)basis
– a basis for this ring/field over the basemap
– boolean (defaultTrue
), whether to return \(R\)-linear maps to and from \(V\)
OUTPUT:
A finite-rank free \(R\)-module \(V\)
An \(R\)-module isomorphism from \(V\) to this ring/field (only included if
map
isTrue
)An \(R\)-module isomorphism from this ring/field to \(V\) (only included if
map
isTrue
)
EXAMPLES:
sage: R.<x> = ZZ[] sage: K.<a> = Qq(125) sage: L.<pi> = K.extension(x^2-5) sage: V, from_V, to_V = K.free_module() sage: W, from_W, to_W = L.free_module() sage: W0, from_W0, to_W0 = L.free_module(base=Qp(5)) sage: to_V(a + O(5^7)) (O(5^7), 1 + O(5^7), O(5^7)) sage: to_W(a) (a + O(5^20), O(5^20)) sage: to_W0(a + O(5^7)) (O(5^7), 1 + O(5^7), O(5^7), O(5^7), O(5^7), O(5^7)) sage: to_W(pi) (O(5^21), 1 + O(5^20)) sage: to_W0(pi + O(pi^11)) (O(5^6), O(5^6), O(5^6), 1 + O(5^5), O(5^5), O(5^5)) sage: X, from_X, to_X = K.free_module(K) sage: to_X(a) (a + O(5^20))
- ground_ring()¶
Returns the ring of which this ring is an extension.
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: W.ground_ring() 5-adic Ring with capped relative precision 5
- ground_ring_of_tower()¶
Returns the p-adic base ring of which this is ultimately an extension.
Currently this function is identical to ground_ring(), since relative extensions have not yet been implemented.
EXAMPLES:
sage: Qq(27,30,names='a').ground_ring_of_tower() 3-adic Field with capped relative precision 30
- modulus(exact=False)¶
Returns the polynomial defining this extension.
INPUT:
exact
– boolean (defaultFalse
), whether to return the underlying exactdefining polynomial rather than the one with coefficients in the base ring.
EXAMPLES:
sage: R = Zp(5,5) sage: S.<x> = R[] sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5 sage: W.<w> = R.ext(f) sage: W.modulus() (1 + O(5^5))*x^5 + O(5^6)*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6) sage: W.modulus(exact=True) x^5 + 75*x^3 - 15*x^2 + 125*x - 5
See also
- polynomial_ring()¶
Returns the polynomial ring of which this is a quotient.
EXAMPLES:
sage: Qq(27,30,names='a').polynomial_ring() Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 30
- random_element()¶
Return a random element of
self
.This is done by picking a random element of the ground ring self.degree() times, then treating those elements as coefficients of a polynomial in self.gen().
EXAMPLES:
sage: R.<a> = Zq(125, 5); R.random_element() (3*a^2 + 3*a + 3) + (a^2 + 4*a + 1)*5 + (3*a^2 + 4*a + 1)*5^2 + (2*a^2 + 3*a + 3)*5^3 + (4*a^2 + 3)*5^4 + O(5^5) sage: R = Zp(5,3); S.<x> = ZZ[]; f = x^5 + 25*x^2 - 5; W.<w> = R.ext(f) sage: W.random_element() 4 + 3*w + w^2 + 4*w^3 + w^5 + 3*w^6 + w^7 + 4*w^10 + 2*w^12 + 4*w^13 + 3*w^14 + O(w^15)
- class sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism¶
Bases:
sage.categories.map.Map
A base class for various isomorphisms between p-adic rings/fields and free modules
EXAMPLES:
sage: K.<a> = Qq(125) sage: V, fr, to = K.free_module() sage: from sage.rings.padics.padic_extension_generic import pAdicModuleIsomorphism sage: isinstance(fr, pAdicModuleIsomorphism) True
- is_injective()¶
EXAMPLES:
sage: K.<a> = Qq(125) sage: V, fr, to = K.free_module() sage: fr.is_injective() True
- is_surjective()¶
EXAMPLES:
sage: K.<a> = Qq(125) sage: V, fr, to = K.free_module() sage: fr.is_surjective() True