Elements of Quotients of Univariate Polynomial Rings¶
EXAMPLES: We create a quotient of a univariate polynomial ring over Z.
sage: R.<x> = ZZ[]
sage: S.<a> = R.quotient(x^3 + 3*x -1)
sage: 2 * a^3
-6*a + 2
Next we make a univariate polynomial ring over Z[x]/(x3+3x−1).
sage: S1.<y> = S[]
And, we quotient out that by y2+a.
sage: T.<z> = S1.quotient(y^2+a)
In the quotient z2 is −a.
sage: z^2
-a
And since a3=−3x+1, we have:
sage: z^6
3*a - 1
sage: R.<x> = PolynomialRing(Integers(9))
sage: S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)
sage: a^100
7*a^3 + 8*a + 7
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: a
a
sage: a^3
2
For the purposes of comparison in Sage the quotient element a3 is equal to x3. This is because when the comparison is performed, the right element is coerced into the parent of the left element, and x3 coerces to a3.
sage: a == x
True
sage: a^3 == x^3
True
sage: x^3
x^3
sage: S(x^3)
2
AUTHORS:
William Stein
- class sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement(parent, polynomial, check=True)¶
Bases:
sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr
,sage.structure.element.CommutativeRingElement
Element of a quotient of a polynomial ring.
EXAMPLES:
sage: P.<x> = QQ[] sage: Q.<xi> = P.quo([(x^2+1)]) sage: xi^2 -1 sage: singular(xi) xi sage: (singular(xi)*singular(xi)).NF('std(0)') -1
- charpoly(var)¶
The characteristic polynomial of this element, which is by definition the characteristic polynomial of right multiplication by this element.
INPUT:
var
- string - the variable name
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5) sage: a.charpoly('X') X^3 - 389*X^2 + 2*X - 5
- fcp(var='x')¶
Return the factorization of the characteristic polynomial of this element.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5) sage: a.fcp('x') x^3 - 389*x^2 + 2*x - 5 sage: S(1).fcp('y') (y - 1)^3
- field_extension(names)¶
Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same polynomial, a homomorphism from its parent to the number field sending the generators to one another, and the inverse isomorphism.
INPUT:
names
- name of generator of output field
OUTPUT:
field
homomorphism from self to field
homomorphism from field to self
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<alpha> = R.quotient(x^3-2) sage: F.<a>, f, g = alpha.field_extension() sage: F Number Field in a with defining polynomial x^3 - 2 sage: a = F.gen() sage: f(alpha) a sage: g(a) alpha
Over a finite field, the corresponding field extension is not a number field:
sage: R.<x> = GF(25,'b')['x'] sage: S.<a> = R.quo(x^3 + 2*x + 1) sage: F.<b>, g, h = a.field_extension() sage: h(b^2 + 3) a^2 + 3 sage: g(x^2 + 2) b^2 + 2
We do an example involving a relative number field:
sage: R.<x> = QQ['x'] sage: K.<a> = NumberField(x^3-2) sage: S.<X> = K['X'] sage: Q.<b> = S.quo(X^3 + 2*X + 1) sage: F, g, h = b.field_extension('c')
Another more awkward example:
sage: R.<x> = QQ['x'] sage: K.<a> = NumberField(x^3-2) sage: S.<X> = K['X'] sage: f = (X+a)^3 + 2*(X+a) + 1 sage: f X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3 sage: Q.<z> = S.quo(f) sage: F.<w>, g, h = z.field_extension() sage: c = g(z) sage: f(c) 0 sage: h(g(z)) z sage: g(h(w)) w
AUTHORS:
Craig Citro (2006-08-06)
William Stein (2006-08-06)
- is_unit()¶
Return
True
ifself
is invertible.Warning
Only implemented when the base ring is a field.
EXAMPLES:
sage: R.<x> = QQ[] sage: S.<y> = R.quotient(x^2 + 2*x + 1) sage: (2*y).is_unit() True sage: (y+1).is_unit() False
- lift()¶
Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than the modulus.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3-2) sage: b = a^2 - 3 sage: b a^2 - 3 sage: b.lift() x^2 - 3
- list(copy=True)¶
Return list of the elements of
self
, of length the same as the degree of the quotient polynomial ring.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3 + 2*x - 5) sage: a^10 -134*a^2 - 35*a + 300 sage: (a^10).list() [300, -35, -134]
- matrix()¶
The matrix of right multiplication by this element on the power basis for the quotient ring.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3 + 2*x - 5) sage: a.matrix() [ 0 1 0] [ 0 0 1] [ 5 -2 0]
- minpoly()¶
The minimal polynomial of this element, which is by definition the minimal polynomial of right multiplication by this element.
- norm()¶
The norm of this element, which is the determinant of the matrix of right multiplication by this element.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5) sage: a.norm() 5
- trace()¶
The trace of this element, which is the trace of the matrix of right multiplication by this element.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5) sage: a.trace() 389