Puiseux Series Ring Element¶
A Puiseux series is a series of the form
where the integer \(e\) is called the ramification index of the series and the number \(a\) is the center. A Puiseux series is essentially a Laurent series but with fractional exponents.
EXAMPLES:
We begin by constructing the ring of Puiseux series in \(x\) with coefficients in the rationals:
sage: R.<x> = PuiseuxSeriesRing(QQ)
This command also defines x
as the generator of this ring.
When constructing a Puiseux series, the ramification index is automatically determined from the greatest common divisor of the exponents:
sage: p = x^(1/2); p
x^(1/2)
sage: p.ramification_index()
2
sage: q = x^(1/2) + x**(1/3); q
x^(1/3) + x^(1/2)
sage: q.ramification_index()
6
Other arithmetic can be performed with Puiseux Series:
sage: p + q
x^(1/3) + 2*x^(1/2)
sage: p - q
-x^(1/3)
sage: p * q
x^(5/6) + x
sage: (p / q).add_bigoh(4/3)
x^(1/6) - x^(1/3) + x^(1/2) - x^(2/3) + x^(5/6) - x + x^(7/6) + O(x^(4/3))
Mind the base ring. However, the base ring can be changed:
sage: I*q
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Number Field in I with defining polynomial x^2 + 1 with I = 1*I' and 'Puiseux Series Ring in x over Rational Field'
sage: qz = q.change_ring(ZZ); qz
x^(1/3) + x^(1/2)
sage: qz.parent()
Puiseux Series Ring in x over Integer Ring
Other properties of the Puiseux series can be easily obtained:
sage: r = (3*x^(-1/5) + 7*x^(2/5) + (1/2)*x).add_bigoh(6/5); r
3*x^(-1/5) + 7*x^(2/5) + 1/2*x + O(x^(6/5))
sage: r.valuation()
-1/5
sage: r.prec()
6/5
sage: r.precision_absolute()
6/5
sage: r.precision_relative()
7/5
sage: r.exponents()
[-1/5, 2/5, 1]
sage: r.coefficients()
[3, 7, 1/2]
Finally, Puiseux series are compatible with other objects in Sage. For example, you can perform arithmetic with Laurent series:
sage: L.<x> = LaurentSeriesRing(ZZ)
sage: l = 3*x^(-2) + x^(-1) + 2 + x**3
sage: r + l
3*x^-2 + x^-1 + 3*x^(-1/5) + 2 + 7*x^(2/5) + 1/2*x + O(x^(6/5))
AUTHORS:
Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
Frédéric Chapoton 2016: integration of code
Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions
REFERENCES:
- class sage.rings.puiseux_series_ring_element.PuiseuxSeries¶
Bases:
sage.structure.element.AlgebraElement
A Puiseux series.
\[\sum_{n=-N}^\infty a_n x^{n/e}\]It is stored as a Laurent series:
\[\sum_{n=-N}^\infty a_n t^n\]where \(t = x^{1/e}\).
INPUT:
parent
– the parent ringf
– one of the following types of inputs:instance of
PuiseuxSeries
instance that can be coerced into the Laurent series ring of the parent
e
– integer (default: 1) the ramification index
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(1/2) + x**3; p x^(1/2) + x^3 sage: q = x**(1/2) - x**(-1/2) sage: r = q.add_bigoh(7/2); r -x^(-1/2) + x^(1/2) + O(x^(7/2)) sage: r**2 x^-1 - 2 + x + O(x^3)
- add_bigoh(prec)¶
Return the truncated series at chosen precision
prec
.INPUT:
prec
– the precision of the series as a rational number
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: p.add_bigoh(2) x^(-7/2) + 3 + 5*x^(1/2) + O(x^2) sage: p.add_bigoh(0) x^(-7/2) + O(1) sage: p.add_bigoh(-1) x^(-7/2) + O(x^-1)
Note
The precision passed to the method is adapted to the common ramification index:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x**(-1/3) + 2*x**(1/5) sage: p.add_bigoh(1/2) x^(-1/3) + 2*x^(1/5) + O(x^(7/15))
- change_ring(R)¶
Return
self
over a the new ringR
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: q = p.change_ring(QQ); q x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3 sage: q.parent() Puiseux Series Ring in x over Rational Field
- coefficients()¶
Return the list of coefficients.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6) sage: p.coefficients() [1, 2, 3]
- common_prec(p)¶
Return the minimum precision of \(p\) and
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = (x**(-1/3) + 2*x**3)**2 sage: q5 = p.add_bigoh(5); q5 x^(-2/3) + 4*x^(8/3) + O(x^5) sage: q7 = p.add_bigoh(7); q7 x^(-2/3) + 4*x^(8/3) + 4*x^6 + O(x^7) sage: q5.common_prec(q7) 5 sage: q7.common_prec(q5) 5
- degree()¶
Return the degree of
self
.EXAMPLES:
sage: P.<y> = PolynomialRing(GF(5)) sage: R.<x> = PuiseuxSeriesRing(P) sage: p = 3*y*x**(-2/3) + 2*y**2*x**(1/5); p 3*y*x^(-2/3) + 2*y^2*x^(1/5) sage: p.degree() 1/5
- exponents()¶
Return the list of exponents.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6) sage: p.exponents() [3/4, 4/5, 5/6]
- inverse()¶
Return the inverse of
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: 1/p x^(7/2) - 3*x^7 - 5*x^(15/2) + 7*x^10 + 9*x^(21/2) + 30*x^11 + 25*x^(23/2) + O(x^(27/2))
- is_monomial()¶
Return whether
self
is a monomial.This is
True
if and only ifself
is \(x^p\) for some rational \(p\).EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(1/2) + 3/4 * x^(2/3) sage: p.is_monomial() False sage: q = x**(11/13) sage: q.is_monomial() True sage: q = 4*x**(11/13) sage: q.is_monomial() False
- is_unit()¶
Return whether
self
is a unit.A Puiseux series is a unit if and only if its leading coefficient is.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: p.is_unit() True sage: q = 4 * x^(-7/2) + 3 * x**4 sage: q.is_unit() False
- is_zero()¶
Return whether
self
is zero.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(1/2) + 3/4 * x^(2/3) sage: p.is_zero() False sage: R.zero().is_zero() True
- laurent_part()¶
Return the underlying Laurent series.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(1/2) + 3/4 * x^(2/3) sage: p.laurent_part() x^3 + 3/4*x^4
- laurent_series()¶
If
self
is a Laurent series, return it as a Laurent series.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x**(1/2) - x**(-1/2) sage: p.laurent_series() Traceback (most recent call last): ... ArithmeticError: self is not a Laurent series sage: q = p**2 sage: q.laurent_series() x^-1 - 2 + x
- list()¶
Return the list of coefficients indexed by the exponents of the the corresponding Laurent series.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6) sage: p.list() [1, 0, 0, 2, 0, 3]
- power_series()¶
If
self
is a power series, return it as a power series.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQbar) sage: p = x**(3/2) - QQbar(I)*x**(1/2) sage: p.power_series() Traceback (most recent call last): ... ArithmeticError: self is not a power series sage: q = p**2 sage: q.power_series() -x - 2*I*x^2 + x^3
- prec()¶
Return the precision of
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = (x**(-1/3) + 2*x**3)**2; p x^(-2/3) + 4*x^(8/3) + 4*x^6 sage: q = p.add_bigoh(5); q x^(-2/3) + 4*x^(8/3) + O(x^5) sage: q.prec() 5
- precision_absolute()¶
Return the precision of
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = (x**(-1/3) + 2*x**3)**2; p x^(-2/3) + 4*x^(8/3) + 4*x^6 sage: q = p.add_bigoh(5); q x^(-2/3) + 4*x^(8/3) + O(x^5) sage: q.prec() 5
- precision_relative()¶
Return the relative precision of the series.
The relative precision of the Puiseux series is the difference between its absolute precision and its valuation.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(GF(3)) sage: p = (x**(-1/3) + 2*x**3)**2; p x^(-2/3) + x^(8/3) + x^6 sage: q = p.add_bigoh(7); q x^(-2/3) + x^(8/3) + x^6 + O(x^7) sage: q.precision_relative() 23/3
- ramification_index()¶
Return the ramification index.
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(1/2) + 3/4 * x^(2/3) sage: p.ramification_index() 6
- shift(r)¶
Return this Puiseux series multiplied by \(x^r\).
EXAMPLES:
sage: P.<y> = LaurentPolynomialRing(ZZ) sage: R.<x> = PuiseuxSeriesRing(P) sage: p = y*x**(-1/3) + 2*y^(-2)*x**(1/2); p y*x^(-1/3) + (2*y^-2)*x^(1/2) sage: p.shift(3) y*x^(8/3) + (2*y^-2)*x^(7/2)
- truncate(r)¶
Return the Puiseux series of degree \(< r\).
This is equivalent to
self
modulo \(x^r\).EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ) sage: p = (x**(-1/3) + 2*x**3)**2; p x^(-2/3) + 4*x^(8/3) + 4*x^6 sage: q = p.truncate(5); q x^(-2/3) + 4*x^(8/3) sage: q == p.add_bigoh(5) True
- valuation()¶
Return the valuation of
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: p.valuation() -7/2
- variable()¶
Return the variable of
self
.EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(QQ) sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3 sage: p.variable() 'x'