The references for Sage, sorted alphabetically by citation key.

REFERENCES:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

AAGMRZ2019

M. Aagaard, R. AlTawy, G. Gong, K. Mandal, R. Rohit, N. Zidaric “WAGE: An Authenticated CipherSubmission to the NIST LWC Competition” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/wage-spec.pdf

Ab1995

Julian R. Abel, On the Existence of Balanced Incomplete Block Designs and Transversal Designs, PhD Thesis, University of New South Wales, 1995

AB2007

M. Aschenbrenner, C. Hillar, Finite generation of symmetric ideals. Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192.

AB2008

M. Aschenbrenner, C. Hillar, An Algorithm for Finding Symmetric Groebner Bases in Infinite Dimensional Rings. arXiv 0801.4439.

ABBDHR2019

R. Avanzi, S. Banik, A. Bogdanvo, O. Dunkelman, S. Huang, F. Regazzoni “Qameleonv. 1.0” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/qameleon-spec.pdf

ABBR2011

A. Abad, R. Barrio, F. Blesa, M. Rodriguez. “TIDES tutorial: Integrating ODEs by using the Taylor Series Method.” http://www.unizar.es/acz/05Publicaciones/Monografias/MonografiasPublicadas/Monografia36/IndMonogr36.htm

ABBR2012

A. Abad, R. Barrio, F. Blesa, M. Rodriguez. Algorithm 924. ACM Transactions on Mathematical Software, 39 no. 1 (2012), 1-28.

ABCFHLLMRT2019

A. Abdomnicai, T. P. Berger, C. Clavier, J. Francq, P. Huynh, V. Lallemand, K. Le Gouguec, M. Minier, L. Reynaud, G. Thomas. “Lilliput-AE: a New Lightweight Tweakable BlockCipher for Authenticated Encryption with AssociatedData” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf

ABCMT2019

V. Arul, A. J. Best, E. Costa, R. Magner, and N. Triantafillou, Computing zeta functions of cyclic covers in large characteristic, The Open Book Series, vol. 2, no. 1, pp. 37–53, Jan. 2019.

ABZ2007

R. Aharoni and E. Berger and R. Ziv. Independent systems of representatives in weighted graphs. Combinatorica vol 27, num 3, p253–267, 2007. doi:10.1007/s00493-007-2086-y.

AC1994

R.J.R. Abel and Y.W. Cheng, Some new MOLS of order 2np for p a prime power, The Australasian Journal of Combinatorics, vol 10 (1994)

ACFLSS04

F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and C. T. Symons: Kernelization Algorithm for the Vertex Cover Problem: Theory and Experiments. SIAM ALENEX/ANALCO 2004: 62-69.

Ack2016

Lennart Ackermans, Oplosbaarheid van Kegelsneden. http://www.math.leidenuniv.nl/nl/theses/Bachelor/.

ACHRS2008

L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, P. Seymour, Bisimplicial vertices in even-hole-free graphs. Journal of Combinatorial Theory, Series B, vol 98, n.6, pp 1119-1164, 2008. doi:10.1016/j.jctb.2007.12.006.

ABS2004

N. Alon, I. Benjamini and Alan Stacey, Percolation on finite graphs and isoperimetric inequalities, The Annals of Probability 32 (2004), no. 3A, 1727-1745.

ADKF1970

V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. ‘On Economical Construction of the Transitive Closure of a Directed Graph.’ Dokl. Akad. Nauk. SSSR No. 194 (in Russian), English Translation in Soviet Math Dokl. No. 11, 1970.

ADKLPY2014

M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and T. Yalcin, Block ciphers - focus on the linear layer (feat. PRIDE); in CRYPTO, (2014), pp. 57-76.

ABBS2013

J.-C Aval, A. Boussicault, M. Bouvel, M. Silimbani, Combinatorics of non-ambiguous trees, arXiv 1305.3716

AD2010

Arett, Danielle and Doree, Suzanne, Coloring and counting on the Hanoi graphs. Mathematics Magazine, Volume 83, Number 3, June 2010, pages 200-9. doi:10.4169/002557010X494841.

AE1993

A. Apostolico, A. Ehrenfeucht, Efficient detection of quasiperiodicities in strings, Theoret. Comput. Sci. 119 (1993) 247–265.

AG1988

George E. Andrews, F. G. Garvan, Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.) Volume 18, Number 2 (1988), 167-171. http://projecteuclid.org/euclid.bams/1183554533

AGHJLPR2017

Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn, Computing convex hulls and counting integer points with polymake, Math. Program. Comput. 9 (2017), no. 1, 1–38, doi:10.1007/s12532-016-0104-z

AguSot05

Marcelo Aguiar and Frank Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Advances in Mathematics, Volume 191, Issue 2, 1 March 2005, pp. 225–275, arXiv math/0203282v2.

AH2002

R. J. Aumann and S. Hart, Elsevier, eds. Computing equilibria for two-person games. http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf (2002)

AHK2015

Karim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries. arXiv 1511.02888.

AHKOS2014

Aubin Arroyo, Isabel Hubard, Klavdija Kutnar, Eugenia O’Reilly, and Primož Šparl. Classification of Symmetric Tabačjn Graphs. Graphs and Combinatorics 31:1137-1153, 2015. doi:10.1007/s00373-014-1447-8

AHMP2008

J.-P. Aumasson, L. Henzen, W. Meier, and R. C-W Phan, Sha-3 proposal blake; in Submission to NIST, (2008).

AHU1974

A. Aho, J. Hopcroft, and J. Ullman. ‘Chapter 6: Matrix Multiplication and Related Operations.’ The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

AIKMMNT2001

K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, Camellia: A 128-bit block cipher suitable for multiple platforms - Design and analysis; in SAC, (2000), pp. 39-56.

Aj1996

M. Ajtai. Generating hard instances of lattice problems (extended abstract). STOC, pp. 99–108, ACM, 1996.

AK1994

S. Ariki and K. Koike. A Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr\mathfrak{S}_n\) and construction of its irreducible representations. Adv. Math. 106 (1994), 216–243, MathSciNet MR1279219

AKMMMP2002

Sang Yook An, Seog Young Kim, David C. Marshall, Susan H. Marshall, William G. McCallum, Alexander R. Perlis, Jacobians of Genus One Curves, Journal of Number Theory 90 (2002), pp.304–315, http://www.math.arizona.edu/~wmc/Research/JacobianFinal.pdf

AKMRVW

A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, C. Vincent, and M. West, A robust implementation for solving the S-unit equation and several applications. arXiv 1903.00977

AJL2011

S. Ariki, N. Jacon, and C. Lecouvey. The modular branching rule for affine Hecke algebras of type A. Adv. Math. 228:481-526, 2011.

Aki1980

J. Akiyama. and G. Exoo and F. Harary. Covering and packing in graphs. III: Cyclic and acyclic invariants. Mathematical Institute of the Slovak Academy of Sciences. Mathematica Slovaca vol 30, n 4, pages 405–417, 1980

Al1947

A. A. Albert, A Structure Theory for Jordan Algebras. Annals of Mathematics, Second Series, Vol. 48, No. 3 (Jul., 1947), pp. 546–567.

AL1978

A. O. L. Atkin and Wen-Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of \(W\)-operators. Inventiones math. 48 (1978), 221-243.

AL2015

M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras. Algebra Number Theory, v.9, 2015, n.3, 2015.

Ald1990

D. Aldous, The random walk construction of uniform spanning trees, SIAM J Discrete Math 3 (1990), 450-465. doi:10.1137/0403039.

ALPRRV2019

E. Andreeva, V. Lallemand, A. Purnal, R. Reyhanitabar, A. Roy, D. Vizar “ForkAE v.1” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/forkae-spec.pdf

AM1969

M. F. Atiyah and I. G. Macdonald, “Introduction to commutative algebra”, Addison-Wesley, 1969.

AM1974

J. F. Adams and H. R. Margolis, “Sub-Hopf-algebras of the Steenrod algebra,” Proc. Cambridge Philos. Soc. 76 (1974), 45-52.

AM2000

S. Ariki and A. Mathas. The number of simple modules of the Hecke algebras of type G(r,1,n). Math. Z. 233 (2000), no. 3, 601–623. MathSciNet MR1750939

AM2020

A. L. Agore and G. Militaru. A new invariant for finite dimensional Leibniz/Lie algebras. Preprint, arXiv 2006.00711 (2020).

AMOZ2006

Asahiro, Y. and Miyano, E. and Ono, H. and Zenmyo, K., Graph orientation algorithms to minimize the maximum outdegree. Proceedings of the 12th Computing: The Australasian Theory Symposium, Volume 51, page 20. Australian Computer Society, Inc. 2006.

AP1986

S. Arnborg, A. Proskurowski, Characterization and Recognition of Partial 3-Trees, SIAM Journal of Alg. and Discrete Methods, Vol. 7, pp. 305-314, 1986. doi:10.1137/0607033.

Ap1997

T. Apostol, Modular functions and Dirichlet series in number theory, Springer, 1997 (2nd ed), section 3.7–3.9.

APR2001

George E. Andrews, Peter Paule, Axel Riese, MacMahon’s partition analysis: the Omega package, European J. Combin. 22 (2001), no. 7, 887–904.

Ar2006

D. Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc., 2006.

AR2012

D. Armstrong and B. Rhoades. “The Shi arrangement and the Ish arrangement”. Transactions of the American Mathematical Society 364 (2012), 1509-1528. arXiv 1009.1655

Ariki1996

S. Ariki. On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\). J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MathSciNet MR1443748

Ariki2001

S. Ariki. On the classification of simple modules for cyclotomic Hecke algebras of type \(G(m,1,n)\) and Kleshchev multipartitions. Osaka J. Math. 38 (2001), 827–837. MathSciNet MR1864465

Arn2002

P. Arnoux, Sturmian sequences, in Substitutions in Dynamics, N. Pytheas Fogg (Ed.), Arithmetics, and Combinatorics (Lecture Notes in Mathematics, Vol. 1794), 2002.

Ass1978

J. Assion: Einige endliche Faktorgruppen der Zopfgruppen, Math. Z., 163 (1978), 291-302.

ARVT2005

Michael Artin, Fernando Rodriguez-Villegas, John Tate, On the Jacobians of plane cubics, Advances in Mathematics 198 (2005) 1, pp. 366–382 doi:10.1016/j.aim.2005.06.004 http://www.math.utexas.edu/users/villegas/publications/jacobian-cubics.pdf

AS-Bessel

F. W. J. Olver: 9. Bessel Functions of Integer Order, in Abramowitz and Stegun: Handbook of Mathematical Functions. http://people.math.sfu.ca/~cbm/aands/page_355.htm

AS-Spherical

H. A. Antosiewicz: 10. Bessel Functions of Fractional Order, in Abramowitz and Stegun: Handbook of Mathematical Functions. http://people.math.sfu.ca/~cbm/aands/page_435.htm

AS-Struve

M. Abramowitz: 12. Struve Functions and Related Functions, in Abramowitz and Stegun: Handbook of Mathematical Functions. http://people.math.sfu.ca/~cbm/aands/page_495.htm

AS1964

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, 55. 1964. See also http://www.math.sfu.ca/~cbm/aands/.

As2008

Sami Assaf. A combinatorial realization of Schur-Weyl duality via crystal graphs and dual equivalence graphs. FPSAC 2008, 141-152, Discrete Math. Theor. Comput. Sci. Proc., AJ, Assoc. Discrete Math. Theor. Comput. Sci., (2008). arXiv 0804.1587v1

AO2018

Sami Assaf and Ezgi Kantarci Oguz. A local characterization of crystals for the quantum queer superalgebra. Preprint (2018). arXiv 1803.06317

AS2003

Jean-Paul Allouche, Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.

As2008b

Sami Assaf. Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity. (2008). arXiv 1005.3759v5.

AS2011

R.B.J.T Allenby and A. Slomson, “How to count”, CRC Press (2011)

ASD1971

A. O. L. Atkin and H. P. F. Swinnerton-Dyer, “Modular forms on noncongruence subgroups”, Proc. Symp. Pure Math., Combinatorics (T. S. Motzkin, ed.), vol. 19, AMS, Providence 1971

At1990

M. D. Atkinson. On computing the number of linear extensions of a tree. Order 7 (1990) 20-25.

At1992

M. D. Atkinson. Solomon’s descent algebra revisited. Bull. London Math. Soc. 24 (1992) 545-551. http://www.cs.otago.ac.nz/staffpriv/mike/Papers/Descent/DescAlgRevisited.pdf

Atk1992

A. Oliver L. Atkin. ‘Probabilistic primality testing’ (Chapter 30, Section 4) In Ph. Flajolet and P. Zimmermann, editors, Algorithms Seminar, 1991-1992. INRIA Research Report 1779, 1992, http://www.inria.fr/rrrt/rr-1779.html. Summary by F. Morain. http://citeseer.ist.psu.edu/atkin92probabilistic.html

Ath1996

C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields. Advances in Mathematics, 122(2):193-233, 1996.

Av2000

D. Avis, A revised implementation of the reverse search vertex enumeration algorithm. Polytopes-combinatorics and computation. Birkhauser Basel, 2000.

Ava2007

J.-C. Aval. Keys and alternating sign matrices. Sem. Lothar. Combin. 59 (2007/10), Art. B59f, 13 pp.

Ava2017

R. Avanzi, The QARMA block cipher family; in ToSC, (2017.1), pp. 4-44.

AW2006

Adams, M.D. and Wise, D.S., Fast additions on masked integers, ACM SIGPLAN Notices, 2006, vol. 41, n.5, pages 39–45. doi:10.1145/1149982.1149987. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.1801&rep=rep1&type=pdf

AY1983

I. A. Aizenberg and A. P. Yuzhakov. Integral representations and residues in multidimensional complex analysis. Translations of Mathematical Monographs, 58. American Mathematical Society, Providence, RI. (1983). x+283 pp. ISBN: 0-8218-4511-X.

AZZ2005

V. Anne, L.Q. Zamboni, I. Zorca, Palindromes and Pseudo- Palindromes in Episturmian and Pseudo-Palindromic Infinite Words, in : S. Brlek, C. Reutenauer (Eds.), Words 2005, Publications du LaCIM, Vol. 36 (2005) 91–100.

B

Baer2020

Christian Bär. The Faddeev-LeVerrier algorithm and the Pfaffian. arXiv 2008.04247, 2020.

BaKi2001

Bakalov and Kirillov, Lectures on tensor categories and modular functors, AMS (2001).

Ba1994

Kaushik Basu. The Traveler’s Dilemma: Paradoxes of Rationality in Game Theory. The American Economic Review (1994): 391-395.

BaSt1990

Margaret M. Bayer and Bernd Sturmfels. Lawrence polytopes. Canadian J. Math.42 (1990), 62–79.

BAK1998

E. Biham, R. J. Anderson, and L. R. Knudsen, Serpent: A new block cipher proposal; in FSE, (1998), pp. 222-238.

Bar1970

Barnette, “Diagrams and Schlegel diagrams”, in Combinatorial Structures and Their Applications, Proc. Calgary Internat. Conference 1969, New York, 1970, Gordon and Breach.

Bar2006

G. Bard. ‘Accelerating Cryptanalysis with the Method of Four Russians’. Cryptography E-Print Archive (http://eprint.iacr.org/2006/251.pdf), 2006.

Bat1991

V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. 43 (1991), 569-585

Bat1994

Victor V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties”, J. Algebraic Geom. 3 (1994), no. 3, 493-535. arXiv alg-geom/9310003v1

Baz2011

Ivan Bazhov, On orbits of the automorphism group on a complete toric variety. Beitr Algebra Geom (2013) 54: 471, arXiv 1110.4275, doi:10.1007/s13366-011-0084-0.

BB1997

Mladen Bestvina and Noel Brady. Morse theory and finiteness properties of groups. Invent. Math. 129 (1997). No. 3, 445-470. www.math.ou.edu/~nbrady/papers/morse.ps.

BB2005

A. Björner, F. Brenti. Combinatorics of Coxeter groups. New York: Springer, 2005.

BB2005a

V. Batagelj and U. Brandes. Efficient generation of large random networks. Phys. Rev. E, 71, 036113, 2005. doi:10.1103/PhysRevE.71.036113.

BB2009

Tomas J. Boothby and Robert W. Bradshaw. Bitslicing and the Method of Four Russians Over Larger Finite Fields. arXiv 0901.1413, 2009.

BB2013

Gavin Brown, Jaroslaw Buczynski: Maps of toric varieties in Cox coordinates, arXiv 1004.4924

BBBCDGLLLMPPSW2019

D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo, G. Leander, G. Leurent, I. Levi, C. Momin, O. Pereira, T. Peters, F. Standeart, F. Wiemer. “Spook: Sponge-Based Leakage-Resilient AuthenticatedEncryption with a Masked Tweakable Block Cipher” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf

BCDM2019

T. Beyne, Y. L. Chen, C. Dobraunig, B. Mennink. Elephant v1 (2019) https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/elephant-spec.pdf

BeBo2009

Olivier Bernardi and Nicolas Bonichon, Intervals in Catalan lattices and realizers of triangulations, JCTA 116 (2009)

BBGL2008

A. Blondin Massé, S. Brlek, A. Garon, and S. Labbé, Combinatorial properties of f -palindromes in the Thue-Morse sequence. Pure Math. Appl., 19(2-3):39–52, 2008.

BBHP2004

Anne Berry, Jean R. S. Blair, Pinar Heggernes, Barry W. Peyton. Maximum Cardinality Search for Computing Minimal Triangulations of Graphs. Algorithmica 39(4):287-298, 2004. doi:10.1007/s00453-004-1084-3

BBISHAR2015

S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regazzoni, Midori: A block cipher for low energy; in ASIACRYPT, (2015), pp. 411-436.

BBKMW2013

B. Bilgin, A. Bogdanov, M, Knezevic, F. Mendel, and Q. Wang, Fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware; in CHES, (2013), pp. 142-158.

BBLSW1999

Babson, Björner, Linusson, Shareshian, and Welker, Complexes of not i-connected graphs, Topology 38 (1999), 271-299

BBMF2008

N. Bonichon, M. Bousquet-Mélou, E. Fusy. Baxter permutations and plane bipolar orientations. Séminaire Lotharingien de combinatoire 61A, article B61Ah, 2008.

BCDGNPY2019

Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, K. Yasuda. “PHOTON-BeetleAuthenticated Encryption and Hash Family” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/PHOTON-Beetle-spec.pdf

BH2012

A. Brouwer and W. Haemers, Spectra of graphs, Springer, 2012, http://homepages.cwi.nl/~aeb/math/ipm/ipm.pdf

BPPSST2017

Banik, Pandey, Peyrin, Sasaki, Sim, and Todo, GIFT : A Small Present Towards Reaching the Limit of Lightweight Encryption. Cryptographic Hardware and Embedded Systems - CHES 2017, 2017.

BPW2006

J. Buchmann, A. Pychkine, R.-P. Weinmann Block Ciphers Sensitive to Groebner Basis Attacks in Topics in Cryptology – CT RSA’06; LNCS 3860; pp. 313–331; Springer Verlag 2006; pre-print available at http://eprint.iacr.org/2005/200

BBS1982

L. Blum, M. Blum, and M. Shub. Comparison of Two Pseudo-Random Number Generators. Advances in Cryptology: Proceedings of Crypto ‘82, pp.61–78, 1982.

BBS1986

L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing, 15(2):364–383, 1986.

BIANCO

L. Bianco, P. Dell‘Olmo, S. Giordani An Optimal Algorithm to Find the Jump Number of Partially Ordered Sets Computational Optimization and Applications, 1997, Volume 8, Issue 2, pp 197–210, doi:10.1023/A:1008625405476

BC1977

R. E. Bixby, W. H. Cunningham, Matroids, Graphs, and 3-Connectivity. In Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, ON, 1977), 91-103

BC2003

A. Biryukov and C. D. Canniere Block Ciphers and Systems of Quadratic Equations; in Proceedings of Fast Software Encryption 2003; LNCS 2887; pp. 274-289, Springer-Verlag 2003.

BC2012

Mohamed Barakat and Michael Cuntz. “Coxeter and crystallographic arrangements are inductively free.” Adv. in Math. 229 Issue 1 (2012). pp. 691-709. doi:10.1016/j.aim.2011.09.011, arXiv 1011.4228.

BC2018

Patrick Brosnan and Timothy Y. Chow. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. Advances in Mathematics 329 (2018): 955-1001. doi:10.1016/j.aim.2018.02.020, arXiv 1511.00773v1.

BCCCNSY2010

Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems in GF(2). In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer Science, pages 203–218. Springer, 2010. pre-print available at http://eprint.iacr.org/2010/313.pdf

BCCM2015

M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On Computing the Hyperbolicity of Real-World Graphs. Proceedings of the 23rd European Symposium on Algorithms (ESA 2015), doi:10.1007/978-3-662-48350-3_19.

BCdlOG2000

Volker Braun, Philip Candelas, Xendia de la Ossa, Antonella Grassi, Toric Calabi-Yau Fourfolds, Duality Between N=1 Theories and Divisors that Contribute to the Superpotential, arXiv hep-th/0001208

BCGKKKLNPRRTY2012

J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalcin, PRINCE - A low-latency block cipher for pervasive computing applications; in ASIACRYPT, (2012), pp. 208-225.

BCH2002

G. Brinkmann, G. Caporossi and P. Hansen, A Constructive Enumeration of Fusenes and Benzenoids, Journal of Algorithms, 45:155-166, 2002. doi:10.1016/S0196-6774(02)00215-8.

BCHOPSY2017

G. Benkart, L. Colmenarejo, P. E. Harris, R. Orellana, G. Panova, A. Schilling, M. Yip. A minimaj-preserving crystal on ordered multiset partitions. Advances in Applied Math. 95 (2018) 96-115, doi:10.1016/j.aam.2017.11.006. arXiv 1707.08709v2.

BCJ2007

Gregory V. Bard, and Nicolas T. Courtois, and Chris Jefferson. Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers. Cryptology ePrint Archive: Report 2007/024. available at http://eprint.iacr.org/2007/024

BCM15

Michele Borassi, Pierluigi Crescenzi, and Andrea Marino, Fast and Simple Computation of Top-k Closeness Centralities. arXiv 1507.01490.

BCMS1988

I. Z. Bouwer, W. W. Chernoff, B. Monson, and Z. Star. The Foster Census, Charles Babbage Research Centre, 1988.

BCN1989

Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-Regular Graphs, Springer, 1989.

BdJ2008

Besser, Amnon, and Rob de Jeu. “Li^(p)-Service? An Algorithm for Computing p-Adic Polylogarithms.” Mathematics of Computation (2008): 1105-1134.

BD1989

R. J. Bradford and J. H. Davenport, Effective tests for cyclotomic polynomials, Symbolic and Algebraic Computation (1989), pp. 244–251, doi:10.1007/3-540-51084-2_22

BD2004

M. Becker and A. Desoky. A study of the DVD content scrambling system (CSS) algorithm; in Proceedings of ISSPIT, (2004), pp. 353-356.

BD2007

Michael Brickenstein, Alexander Dreyer; PolyBoRi: A Groebner basis framework for Boolean polynomials; pre-print available at http://www.itwm.fraunhofer.de/fileadmin/ITWM-Media/Zentral/Pdf/Berichte_ITWM/2007/bericht122.pdf

BDHPR2019

Marthe Bonamy, Oscar Defrain, Marc Heinrich, Michał Pilipczuk, and Jean-Florent Raymond. Enumerating minimal dominating sets in \(K_t\)-free graphs and variants. arXiv 1810.00789

BDLV2006

S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, Theoret. Comput. Sci. 352 (2006) 306–317.

BDP2013

Thomas Brüstle, Grégoire Dupont, Matthieu Pérotin On Maximal Green Sequences arXiv 1205.2050

BDMW2010

K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe, An APN permutation in dimension six; in Finite Fields: Theory and Applications - FQ9, volume 518 of Contemporary Mathematics, pages 33–42. AMS, 2010.

BdVO2012

Christopher Bowman, Maud De Visscher, Rosa Orellana. The partition algebra and the Kronecker coefficients. arXiv 1210.5579v6.

BE1992

A. Brouwer and C. Van Eijl, On the p-Rank of the Adjacency Matrices of Strongly Regular Graphs, Journal of Algebraic Combinatorics (1992), vol.1, n.4, pp329-346, doi:10.1023/A%3A1022438616684.

Bec1992

Bernhard Beckermann. “A reliable method for computing M-Padé approximants on arbitrary staircases”. J. Comput. Appl. Math., 40(1):19-42, 1992. https://doi.org/10.1016/0377-0427(92)90039-Z.

BeCoMe

Frits Beukers, Henri Cohen, Anton Mellit, Finite hypergeometric functions, arXiv 1505.02900

Bee

Robert A. Beezer, A First Course in Linear Algebra, http://linear.ups.edu/. Accessed 15 July 2010.

Bei1970

Lowell Beineke, Characterizations of derived graphs, Journal of Combinatorial Theory, Vol. 9(2), pages 129-135, 1970. doi:10.1016/S0021-9800(70)80019-9.

Bel2011

Belarusian State University, Information technologies. Data protection. Cryptographic algorithms for encryption and integrity control; in STB 34.101.31-2011, (2011).

Bel1927

E.T. Bell, Partition Polynomials, Annals of Mathematics, Second Series, Vol. 29, No. 1/4 (1927 - 1928), pp. 38-46

Ben1998

I. Benjamini, Expanders are not hyperbolic, Israel Journal of Mathematics 108 (1998), 33-36.

BS1997

I. Benjamini and O. Schramm, Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geometric and Functional Analysis 7 (1997), no. 3, 403-419.

Ben2019

Benedetto, Robert L. Dynamics in one non-archimedean variable. Graduate Studies in Mathematics, Volume 198. 2019.

Benasque2009

Fernando Rodriguez Villegas, The L-function of the quintic, http://users.ictp.it/~villegas/hgm/benasque-2009-report.pdf

Ber1987

M. Berger, Geometry I, Springer (Berlin) (1987); doi:10.1007/978-3-540-93815-6

Ber1987a

M. Berger, Geometry II, Springer (Berlin) (1987); doi:10.1007/978-3-540-93816-3

Ber1991

C. Berger, “Une version effective du théorème de Hurewicz”, https://tel.archives-ouvertes.fr/tel-00339314/en/.

Ber2007

Jean Berstel. Sturmian and episturmian words (a survey of some recent results). In S. Bozapalidis and G. Rahonis, editors, CAI 2007,volume 4728 of Lecture Notes in Computer Science, pages 23-47. Springer-Verlag, 2007.

Ber2008

W. Bertram : Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, Memoirs of the American Mathematical Society, vol. 192 (2008); doi:10.1090/memo/0900; arXiv math/0502168

BerZab05

Nantel Bergeron, Mike Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree, J. of Algebra and its Applications (8)(2009), No 4, pp. 581–600, doi:10.1142/S0219498809003485, arXiv math/0509265v3.

BeukersHeckman

F. Beukers and G. Heckman, Monodromy for the hypergeometric function \({}_n F_{n-1}\), Invent. Math. 95 (1989)

BF1999

Thomas Britz, Sergey Fomin, Finite posets and Ferrers shapes, Advances in Mathematics 158, pp. 86-127 (2001), arXiv math/9912126 (the arXiv version has fewer errors).

BF2001

Boucheron, S. and Fernandez de la Vega, W., On the Independence Number of Random Interval Graphs, Combinatorics, Probability and Computing v10, issue 05, Pages 385–396, Cambridge Univ Press, 2001. doi:10.1017/S0963548301004813.

BF2005

R.L. Burden and J.D. Faires. Numerical Analysis. 8th edition, Thomson Brooks/Cole, 2005.

BFS2004

Magali Bardet, Jean-Charles Faugère, and Bruno Salvy, On the complexity of Groebner basis computation of semi-regular overdetermined algebraic equations. Proc. International Conference on Polynomial System Solving (ICPSS), pp. 71-75, 2004.

BFSS2006

A. Bostan, P. Flajolet, B. Salvy and E. Schost, Fast Computation of special resultants, Journal of Symbolic Computation 41 (2006), 1-29

BFZ2005

A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.

BG1972

A. Berman and P. Gaiha. A generalization of irreducible monotonicity. Linear Algebra and its Applications, 5:29-38, 1972.

BG1980

R. L. Bishop and S. L. Goldberg, Tensor analysis on Manifolds, Dover (New York) (1980)

BG1985

M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme Which Hides All Partial Information. In Proceedings of CRYPTO 84 on Advances in Cryptology, pp. 289–299, Springer, 1985.

BG1988

M. Berger & B. Gostiaux : Differential Geometry: Manifolds, Curves and Surfaces, Springer (New York) (1988); doi:10.1007/978-1-4612-1033-7

BGM2012

G. Brinkmann, J. Goedgebeur and B.D. McKay, Generation of Fullerenes, Journal of Chemical Information and Modeling, 52(11):2910-2918, 2012. doi:10.1021/ci3003107.

BI1984

Eiichi Bannai, Tatsuro Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, 1984

Bil2011

N. Billerey. Critères d’irréductibilité pour les représentations des courbes elliptiques. Int. J. Number Theory, 7 (2011); doi:10.1142/S1793042111004538

BH1994

S. Billey, M. Haiman. Schubert polynomials for the classical groups. J. Amer. Math. Soc., 1994.

BH2017

Georgia Benkart and Tom Halverson. Partition algebras \(\mathsf{P}_k(n)\) with \(2k > n\) and the fundamental theorems of invariant theory for the symmetric group \(\mathsf{S}_n\). Preprint (2017). arXiv 1707.1410

BHS2008

Robert Bradshaw, David Harvey and William Stein. strassen_window_multiply_c. strassen.pyx, Sage 3.0, 2008. http://www.sagemath.org

BHNR2004

S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the Palindromic Complexity of Infinite Words, in J. Berstel, J. Karhumaki, D. Perrin, Eds, Combinatorics on Words with Applications, International Journal of Foundation of Computer Science, Vol. 15, No. 2 (2004) 293–306.

BHZ2005

N. Bergeron, C. Hohlweg, and M. Zabrocki, Posets related to the Connectivity Set of Coxeter Groups. arXiv math/0509271v3

Big1993

Norman Linstead Biggs. Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. doi:10.1017/CBO9780511608704

Big1999

Stephen J. Bigelow. The Burau representation is not faithful for \(n = 5\). Geom. Topol., 3:397–404, 1999.

Big2003

Stephen J. Bigelow, The Lawrence-Krammer representation, Geometric Topology, 2001 Georgia International Topology Conference, AMS/IP Studies in Advanced Mathematics 35 (2003). arXiv math/0204057v1

BIP

Rene Birkner, Nathan Owen Ilten, and Lars Petersen: Computations with equivariant toric vector bundles, The Journal of Software for Algebra and Geometry: Macaulay2. http://msp.org/jsag/2010/2-1/p03.xhtml http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.8.2/share/doc/Macaulay2/ToricVectorBundles/html/

Bir1975

J. Birman. Braids, Links, and Mapping Class Groups, Princeton University Press, 1975

Bj1980

Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159-183, doi:10.1090/S0002-9947-1980-0570784-2

BjWe2005

A. Björner and V. Welker, Segre and Rees products of posets, with ring-theoretic applications, J. Pure Appl. Algebra 198 (2005), 43-55

BJKLMPSSS2016

C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim, The SKINNY family of block ciphers and its low-latency variant MANTIS; in CRYPTO, (2016), pp. 123-153.

BK1973

Coen Bron and Joep Kerbosch. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM. v 16. n 9. 1973, pages 575-577. ACM Press. [Online] Available: http://www.ram.org/computing/rambin/rambin.html

BK1977

James R. Bunch and Linda Kaufman. Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems. Mathematics of Computation, 31(137):163-179, 1977.

BK1992

U. Brehm and W. Kuhnel, 15-vertex triangulations of an 8-manifold, Math. Annalen 294 (1992), no. 1, 167-193.

BK2001

W. Bruns and R. Koch, Computing the integral closure of an affine semigroup. Uni. Iaggelonicae Acta Math. 39, (2001), 59-70

BK2008

J. Brundan and A. Kleshchev. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. Invent. Math. 178 (2009), no. 3, 451–484. MathSciNet MR2551762

BK2009

J. Brundan and A. Kleshchev. Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222 (2009), 1883–1942. MathSciNet MR2562768

BK2017

Pascal Baseilhac and Stefan Kolb. Braid group action and root vectors for the \(q\)-Onsager algebra. Preprint, (2017) arXiv 1706.08747.

BK2005

P. Baseilhac and K. Koizumi. A new (in)finite dimensional algebra for quantum integrable models. Nuclear Phys. B 720 (2005), pp. 325-347.

BKK2000

Georgia Benkart, Seok-Jin Kang, Masaki Kashiwara. Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl}(m,n))\), J. Amer. Math. Soc. 13 (2000), no. 2, 295-331.

BKLPPRSV2007

A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin, C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher; in Proceedings of CHES 2007; LNCS 7427; pp. 450-466; Springer Verlag 2007; available at doi:10.1007/978-1-4419-5906-5_605

BKW2011

J. Brundan, A. Kleshchev, and W. Wang, Graded Specht modules, J. Reine Angew. Math., 655 (2011), 61-87. MathSciNet MR2806105

BL1994

Bernhard Beckermann, George Labahn. “A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants”. SIAM J. Matrix Anal. Appl. 15 (1994) 804-823. http://dx.doi.org/10.1137/S0895479892230031

BMP2007

S. Brlek, G. Melançon, G. Paquin, Properties of the extremal infinite smooth words, Discrete Math. Theor. Comput. Sci. 9 (2007) 33–49.

BMPS2018

Jonah Blasiak, Jennifer Morse, Anna Pun, and Daniel Summers. Catalan functions and k-schur positivity arXiv 1804.03701

BL1977

Buckles, B.P. and Lybanon, M., Algorithm 515: generation of a vector from the lexicographical index, ACM Transactions on Mathematical Software (TOMS), 1977 vol. 3, n. 2, pages 180–182.

BL1984

A. Brouwer, J. van Lint, Strongly regular graphs and partial geometries, Enumeration and design, (Waterloo, Ont., 1982) (1984): 85-122. http://oai.cwi.nl/oai/asset/1817/1817A.pdf

BL2000

Anders Björner and Frank H. Lutz, “Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere”, Experiment. Math. 9 (2000), no. 2, 275-289.

BL2003

S. Brlek, A. Ladouceur, A note on differentiable palindromes, Theoret. Comput. Sci. 302 (2003) 167–178.

BL2008

Corentin Boissy and Erwan Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials (arXiv 0710.5614) to appear in Ergodic Theory and Dynamical Systems.

BraLea2008

C. Bracken and Gregor Leander: New families of functions with differential uniformity of 4, Proceedings of the Conference BFCA, Copenhagen, 2008.

BLRS2009

J. Berstel, A. Lauve, C. Reutenauer, F. Saliola, Combinatorics on words: Christoffel words and repetitions in words, CRM Monograph Series, 27. American Mathematical Society, Providence, RI, 2009. xii+147 pp. ISBN: 978-0-8218-4480-9

BLS1999

A. Brandstadt, VB Le and JP Spinrad. Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications, 1999.

BLV1999

Bernhard Beckermann, George Labahn, and Gilles Villard. “Shifted normal forms of polynomial matrices”. In ISSAC’99, pages 189-196. ACM, 1999. https://doi.org/10.1145/309831.309929 .

BLV2006

Bernhard Beckermann, George Labahn, and Gilles Villard. “Normal forms for general polynomial matrices”. J. Symbolic Comput., 41(6):708-737, 2006. https://doi.org/10.1016/j.jsc.2006.02.001 .

BM1940

Becker, M. F., and Saunders MacLane. The minimum number of generators for inseparable algebraic extensions. Bulletin of the American Mathematical Society 46, no. 2 (1940): 182-186.

BM1977

R. S. Boyer, J. S. Moore, A fast string searching algorithm, Communications of the ACM 20 (1977) 762–772.

BM1983

Buer, B., and Mohring, R. H. A fast algorithm for decomposition of graphs and posets, Math. Oper. Res., Vol 8 (1983): 170-184.

BM1993

M. Broué and G. Malle, Zyklotomische Heckealgebren, Asterisque, 212 (1993), 119-89.

BM1997

K. Bremke and G. Malle, Reduced words and a length function for \(G(e,1,n)\). Indag. Mathem., N.S., 8 (1997), no. 4, 453-469.

BM2008

John Adrian Bondy and U.S.R. Murty, “Graph theory”, Volume 244 of Graduate Texts in Mathematics, 2nd edition, Springer, 2008.

BM2003

Bazzi and Mitter, {it Some constructions of codes from group actions}, (preprint March 2003, available on Mitter’s MIT website).

Bond2007

P. Bonderson, Nonabelian anyons and interferometry, Dissertation (2007). https://thesis.library.caltech.edu/2447/

BDGRTW2019

Bonderson, Delaney, Galindo, Rowell, Tran, and Wang, On invariants of modular categories beyond modular data. J. Pure Appl. Algebra 223 (2019), no. 9, 4065–4088. arXiv 1805.05736.

BM2004

John M. Boyer and Wendy J. Myrvold, On the Cutting Edge: *Simplified `O(n)` Planarity by Edge Addition. Journal of Graph Algorithms and Applications, Vol. 8, No. 3, pp. 241-273, 2004. doi:10.7155/jgaa.00091.

BM2007

G. Brinkmann and B.D. McKay, Fast generation of planar graphs, MATCH-Communications in Mathematical and in Computer Chemistry, 58(2):323-357, 2007.

BM2012

N. Bruin and A. Molnar, Minimal models for rational functions in a dynamical setting, LMS Journal of Computation and Mathematics, Volume 15 (2012), pp 400-417.

BM2016

Gunnar Brinkmann, Brendan McKay, Guide to using plantri, version 5.0, 2016. http://cs.anu.edu.au/~bdm/plantri/plantri-guide.txt

BMBFLR2008

A. Blondin-Massé, S. Brlek, A. Frosini, S. Labbé, S. Rinaldi, Reconstructing words from a fixed palindromic length sequence, Proc. TCS 2008, 5th IFIP International Conference on Theoretical Computer Science (September 8-10 2008, Milano, Italia).

BMBL2008

A. Blondin-Massé, S. Brlek, S. Labbé, Palindromic lacunas of the Thue-Morse word, Proc. GASCOM 2008 (June 16-20 2008, Bibbiena, Arezzo-Italia), 53–67.

BMS2006

Bugeaud, Mignotte, and Siksek. “Classical and modular approaches to exponential Diophantine equations: I. Fibonacci and Lucas perfect powers.” Annals of Math, 2006.

BMSS2006

Alin Bostan, Bruno Salvy, Francois Morain, Eric Schost. Fast algorithms for computing isogenies between elliptic curves. [Research Report] 2006, pp.28. <inria-00091441>

BN2010

D. Bump and M. Nakasuji. Integration on \(p\)-adic groups and crystal bases. Proc. Amer. Math. Soc. 138(5), pp. 1595–1605.

BN2008

Victor V. Batyrev and Benjamin Nill. Combinatorial aspects of mirror symmetry. In Integer points in polyhedra — geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemp. Math., pages 35–66. Amer. Math. Soc., Providence, RI, 2008. arXiv math/0703456v2.

Bob2013

J.W. Bober. Conditionally bounding analytic ranks of elliptic curves. ANTS 10, 2013. http://msp.org/obs/2013/1-1/obs-v1-n1-p07-s.pdf

Bod1993

H. L. Bodlaender, A Tourist Guide through Treewidth, Acta Cybern. 1993.

Bod1998

Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer Science 209(1-2):1-45, 1998. doi:10.1016/S0304-3975(97)00228-4.

Bo2009

Bosch, S., Algebra, Springer 2009

Bor1993

Lev A. Borisov, “Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein Fano toric varieties”, 1993. arXiv alg-geom/9310001v1

Bor1995

Stephen P. Borgatti. Centrality and AIDS. (1995). Connections 18(1):112-115. [Online] Available: http://www.analytictech.com/networks/centaids.htm

BOR2009

Emmanuel Briand, Rosa Orellana, Mercedes Rosas. The stability of the Kronecker products of Schur functions. arXiv 0907.4652v2.

Bou1989

N. Bourbaki. Lie Groups and Lie Algebras. Chapters 1-3. Springer. 1989.

BP1982

H. Beker and F. Piper. Cipher Systems: The Protection of Communications. John Wiley and Sons, 1982.

BP1993

Dominique Bernardi and Bernadette Perrin-Riou, Variante \(p\)-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris, Sér I. Math., 317 (1993), no. 3, 227-232.

BP1994

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.

BP2000

V. M. Bukhshtaber and T. E. Panov, “Moment-angle complexes and combinatorics of simplicial manifolds,” Uspekhi Mat. Nauk 55 (2000), 171–172.

BP2015

P. Butera and M. Pernici “Sums of permanental minors using Grassmann algebra”, International Journal of Graph Theory and its Applications, 1 (2015), 83–96. arXiv 1406.5337

BPRS2009

J. Bastian, T. Prellberg, M. Rubey, C. Stump, Counting the number of elements in the mutation classes of \(\tilde{A}_n\)-quivers; arXiv 0906.0487

BPS2008

Lubomira Balkova, Edita Pelantova, and Wolfgang Steiner. Sequences with constant number of return words. Monatsh. Math, 155 (2008) 251-263.

BPS2010

Anne Berry, Romain Pogorelcnik and Genevieve Simonet. An Introduction to Clique Minimal Separator Decomposition. Algorithms 3(2):197-215, 2010. doi:10.3390/a3020197

BPU2016

Alex Biryukov, Léo Perrin, Aleksei Udovenko, Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1; in EuroCrypt’16, pp. 372-402.

BR2010

Matthew Baker and Robert Rumely. Potential theory and dynamics on the Berkovich projective line. Mathematical Surveys and Monographs, Volumne 159. 2010.

BR2010a

Jean Berstel and Christophe Reutenauer, Noncommutative Rational Series With Applications. Cambridge, 2010.

Brandes01

Ulrik Brandes, A faster algorithm for betweenness centrality, Journal of Mathematical Sociology 25.2 (2001): 163-177, http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

Bra2011

Volker Braun, Toric Elliptic Fibrations and F-Theory Compactifications, arXiv 1110.4883

Bre1993

Richard P. Brent. On computing factors of cyclotomic polynomials. Mathematics of Computation. 61 (1993). No. 203. pp 131–149. arXiv 1004.5466v1. http://www.jstor.org/stable/2152941

Bre1997

T. Breuer “Integral bases for subfields of cyclotomic fields” AAECC 8, 279–289 (1997).

Bre2000

Enno Brehm, 3-Orientations and Schnyder 3-Tree-Decompositions, 2000. https://page.math.tu-berlin.de/~felsner/Diplomarbeiten/brehm.ps.gz

Bre2008

A. Bretscher and D. G. Corneil and M. Habib and C. Paul (2008), “A simple Linear Time LexBFS Cograph Recognition Algorithm”, SIAM Journal on Discrete Mathematics, 22 (4): 1277–1296, doi:10.1137/060664690.

Bro2011

Francis Brown, Multiple zeta values and periods: From moduli spaces to Feynman integrals, in Contemporary Mathematics vol 539, pages 27-52, 2011.

Bro2016

A.E. Brouwer, Personal communication, 2016.

Br1910

Bruckner, “Uber die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope)”, Verhand. Konik. Akad. Wetenschap, Erste Sectie, 10 (1910)

Br2000

Kenneth S. Brown, Semigroups, rings, and Markov chains, arXiv math/0006145v1.

BR2000a

P. Barreto and V. Rijmen, The ANUBIS Block Cipher; in First Open NESSIE Workshop, (2000).

BR2000b

P. Barreto and V. Rijmen, The Khazad legacy-level Block Cipher; in First Open NESSIE Workshop, (2000).

BR2000c

P. Barreto and V. Rijmen, The Whirlpool hashing function; in First Open NESSIE Workshop, (2000).

Br2016

Bresenham’s Line Algorithm, Python, 26 December 2016. http://www.roguebasin.com/index.php?title=Bresenham%27s_Line_Algorithm

Bro1982

A. Brouwer, Polarities of G. Higman’s symmetric design and a strongly regular graph on 176 vertices, Aequationes mathematicae 25, no. 1 (1982): 77-82. doi:10.1007/BF02189599.

Bro1989

A. Broder, Generating random spanning trees, Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 442-447. doi:10.1109/SFCS.1989.63516, <http://www.cs.cmu.edu/~15859n/RelatedWork/Broder-GenRanSpanningTrees.pdf>_

Broder2000

Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.L.: Graph structure in the web. Computer Networks 33(1-6), 309–320 (2000)

BRS2015

A. Boussicault, S. Rinaldi et S. Socci. The number of directed k-convex polyominoes 27th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), 2015. arXiv 1501.00872

Bru1994

Richard A. Brualdi, Hyung Chan Jung, William T.Trotter Jr On the poset of all posets on \(n\) elements Volume 50, Issue 2, 6 May 1994, Pages 111-123 Discrete Applied Mathematics http://www.sciencedirect.com/science/article/pii/0166218X9200169M

Bru1998

J. Brundan. Modular branching rules and the Mullineux map for Hecke algebras of type \(A\). Proc. London Math. Soc. (3) 77 (1998), 551–581. MathSciNet MR1643413

BS1996

Eric Bach, Jeffrey Shallit. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. MIT Press, 1996. ISBN 978-0262024051.

BS2003

I. Bouyukliev and J. Simonis, Some new results on optimal codes over \(F_5\), Designs, Codes and Cryptography 30, no. 1 (2003): 97-111, http://www.moi.math.bas.bg/moiuser/~iliya/pdf_site/gf5srev.pdf.

BS2010

P. Baseilhac and K. Shigechi. A new current algebra and the reflection equation. Lett. Math. Phys. 92 (2010), pp. 47-65. arXiv 0906.1482.

BS2011

E. Byrne and A. Sneyd, On the Parameters of Codes with Two Homogeneous Weights. WCC 2011-Workshop on coding and cryptography, pp. 81-90. 2011. https://hal.inria.fr/inria-00607341/document

BS2012

Jonathan Bloom and Dan Saracino, Modified growth diagrams, permutation pivots, and the BWX map \(Phi^*\), Journal of Combinatorial Theory, Series A Volume 119, Number 6 (2012), pp. 1280-1298.

BSS2009

David Bremner, Mathieu Dutour Sikiric, Achill Schuermann: Polyhedral representation conversion up to symmetries, Proceedings of the 2006 CRM workshop on polyhedral computation, AMS/CRM Lecture Notes, 48 (2009), 45-71. arXiv math/0702239

BSV2010

M. Bolt, S. Snoeyink, E. Van Andel. “Visual representation of the Riemann map and Ahlfors map via the Kerzman-Stein equation”. Involve 3-4 (2010), 405-420.

BDLGZ2009

M. Bucci et al. A. De Luca, A. Glen, L. Q. Zamboni, A connection between palindromic and factor complexity using return words,” Advances in Applied Mathematics 42 (2009) 60-74.

BSZ2019

Nils Bruin, Jeroen Sijsling, and Alexandre Zotine, Numerical Computation of Endomorphism Rings of Jacobians, The Open Book Series, Vol. 2 (2019), No. 1, pp. 155-171, https://msp.org/obs/2019/2-1/p10.xhtml

BUVO2007

Johannes Buchmann, Ullrich Vollmer: Binary Quadratic Forms, An Algorithmic Approach, Algorithms and Computation in Mathematics, Volume 20, Springer (2007)

BV2004

Jean-Luc Baril, Vincent Vajnovszki. Gray code for derangements. Discrete Applied Math. 140 (2004) doi:10.1016/j.dam.2003.06.002 http://jl.baril.u-bourgogne.fr/derange.pdf

BV2009

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2009. ISBN 9780521833783.

BvR1982

Andries Brouwer and John van Rees, More mutually orthogonal Latin squares, Discrete Mathematics, vol.39, num.3, pages 263-281, 1982 http://oai.cwi.nl/oai/asset/304/0304A.pdf

BW1988

Anders Björner, Michelle L. Wachs, Generalized quotients in Coxeter groups. Transactions of the American Mathematical Society, vol. 308, no. 1, July 1988. http://www.ams.org/journals/tran/1988-308-01/S0002-9947-1988-0946427-X/S0002-9947-1988-0946427-X.pdf

BW1993

Thomas Becker and Volker Weispfenning. Groebner Bases - A Computational Approach To Commutative Algebra. Springer, New York, 1993.

BW1994

M. Burrows, D.J. Wheeler, “A block-sorting lossless data compression algorithm”, HP Lab Technical Report, 1994, available at http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html

BW1996

Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and posets. I. Trans. of Amer. Math. Soc. 348 No. 4. (1996)

BZ01

A. Berenstein, A. Zelevinsky Tensor product multiplicities, canonical bases and totally positive varieties Invent. Math. 143 No. 1. (2002), 77-128.

BZ2003

Vladimir Batagelj and Matjaz Zaversnik. An `O(m)` Algorithm for Cores Decomposition of Networks. 2003. arXiv cs/0310049v1.

C

Cal2005

D. Callan. On Conjugates for Set Partitions and Integer Compositions. Preprint, arXiv math/0508052.

dCa2007

C. de Canniere: Analysis and Design of Symmetric Encryption Algorithms, PhD Thesis, 2007.

Can1990

J. Canny. Generalised characteristic polynomials. J. Symbolic Comput. Vol. 9, No. 3, 1990, 241–250.

Car1972

R. W. Carter. Simple groups of Lie type, volume 28 of Pure and Applied Mathematics. John Wiley and Sons, 1972.

Cha2005

F. Chapoton, Une Base Symétrique de l’algèbre des Coinvariants Quasi-Symétriques, Electronic Journal of Combinatorics Vol 12(1) (2005) N16.

CQ2019

A. Cassella and C. Quadrelli. Right-angled Artin groups and enhanced Koszul properties. Preprint, arXiv 1907.03824, (2019).

CS1996

G. Call and J. Silverman. Computing the Canonical Height on K3 Surfaces. Mathematics of Comp. , 65 (1996), 259-290.

CB2007

Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryption Standard, In 11-th IMA Conference, Cirencester, UK, 18-20 December 2007, Springer LNCS 4887. See also http://eprint.iacr.org/2006/402/.

CC1982

Chottin and R. Cori, Une preuve combinatoire de la rationalité d’une série génératrice associée aux arbres, RAIRO, Inf. Théor. 16, 113–128 (1982)

CC2013

Mahir Bilen Can and Yonah Cherniavsky. Omitting parentheses from the cyclic notation. (2013). arXiv 1308.0936v2.

CCL2015

N. Cohen, D. Coudert, and A. Lancin. On computing the Gromov hyperbolicity. ACM Journal of Experimental Algorithmics, 20(1.6):1-18, 2015. doi:10.1145/2780652 or [https://hal.inria.fr/hal-01182890].

CCLSV2005

M. Chudnovsky, G. Cornuejols, X. Liu, P. Seymour, K. Vuskovic. Recognizing berge graphs. Combinatorica vol 25 (2005), n 2, pages 143–186. doi:10.1007/s00493-005-0012-8.

CD1996

Charles Colbourn and Jeffrey Dinitz, Making the MOLS table, Computational and constructive design theory, vol 368, pages 67-134, 1996

CD2007

Adrian Clingher and Charles F. Doran, “Modular invariants for lattice polarized K3 surfaces”, Michigan Math. J. 55 (2007), no. 2, 355-393. arXiv math/0602146v1 [math.AG]

CD2013

I. Cardinali and B. De Bruyn, Spin-embeddings, two-intersection sets and two-weight codes, Ars Comb. 109 (2013): 309-319. https://biblio.ugent.be/publication/4241842/file/4241845.pdf

CDJN2019

A. Chakraborti, N. Datta, A. Jha, M. Nandi “HyENA” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/hyena-spec.pdf

CDL2015

A. Canteaut, Sebastien Duval, Gaetan Leurent Construction of Lightweight S-Boxes using Feistel and MISTY Structures; in Proceedings of SAC 2015; LNCS 9566; pp. 373-393; Springer-Verlag 2015; available at http://eprint.iacr.org/2015/711.pdf

CDLNPPS2019

A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin, T. Pornin, A. Schrottenloher. “Saturnin: a suite of lightweight symmetricalgorithms for post-quantum security” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SATURNIN-spec.pdf

CE2001

Raul Cordovil and Gwihen Etienne. A note on the Orlik-Solomon algebra. Europ. J. Combinatorics. 22 (2001). pp. 165-170. http://www.math.ist.utl.pt/~rcordov/Ce.pdf

CE2003

Henry Cohn and Noam Elkies, New upper bounds on sphere packings I, Ann. Math. 157 (2003), 689–714.

Cer1994

D. P. Cervone, “Vertex-minimal simplicial immersions of the Klein bottle in three-space”, Geom. Ded. 50 (1994) 117-141, http://www.math.union.edu/~dpvc/papers/1993-03.kb/vmkb.pdf.

CES2003

Brian Conrad, Bas Edixhoven, William Stein \(J_1(p)\) Has Connected Fibers Documenta Math. 8 (2003) 331–408

CEW2011

Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational Aspects of Cooperative Game Theory. Morgan & Claypool Publishers, (2011). ISBN 9781608456529, doi:10.2200/S00355ED1V01Y201107AIM016.

CF2005

Raul Cordovil and David Forge. Gröbner and diagonal bases in Orlik-Solomon type algebras Cubo 7 (2), (2005). pp. 1-20.

CFHM2013

Wei Chen, Wenjie Fang, Guangda Hu, Michael W. Mahoney, On the Hyperbolicity of Small-World and Treelike Random Graphs, Internet Mathematics 9:4 (2013), 434-491. doi:10.1080/15427951.2013.828336, arXiv 1201.1717.

CFI1992

Cai, JY., Fürer, M. & Immerman, N. Combinatorica (1992) 12: 389. doi:10.1007/BF01305232

CFKPR2010

Ioannis Caragiannis, Afonso Ferreira, Christos Kaklamanis, Stéphane Pérennes, Hervé Rivano. Fractional Path Coloring in Bounded Degree Trees with Applications. Algorithmica, Springer Verlag, 2010, 58 (2), pp.516-540. doi:10.1007/s00453-009-9278-3, https://hal.archives-ouvertes.fr/hal-00371052/document

CFL1958

K.-T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus, IV. The quotient groups of the lower central series, Ann. of Math. 68 (1958) 81–95.

CFZ2000

J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier (Grenoble) 50 (2000) 1265–1276.

CFZ2002

Chapoton, Fomin, Zelevinsky - Polytopal realizations of generalized associahedra, arXiv math/0202004.

CGHLM2013

P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, A. Marino. On computing the diameter of real-world undirected graphs. Theor. Comput. Sci. 514: 84-95 (2013). doi:10.1016/j.tcs.2012.09.018.

CGILM2010

P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the Diameter in Real-World Graphs: Experimentally Turning a Lower Bound into an Upper Bound. Proceedings of 18th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 6346, 302-313. Springer (2010). doi:10.1007/978-3-642-15775-2_26.

CGLM2012

Crescenzi P., Grossi R., Lanzi L., Marino A. (2012) On Computing the Diameter of Real-World Directed (Weighted) Graphs. In: Klasing R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg doi:https://doi.org/10.1007/978-3-642-30850-5_10.

CGW2013

Daniel Cabarcas, Florian Göpfert, and Patrick Weiden. Provably Secure LWE-Encryption with Uniform Secret. Cryptology ePrint Archive, Report 2013/164. 2013. 2013/164. http://eprint.iacr.org/2013/164

Conr

Keith Conrad, “Artin-Hasse-Type Series and Roots of Unity”, http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/AHrootofunity.pdf

CGMRV16

A. Conte, R. Grossi, A. Marino, R. Rizzi, L. Versari, “Directing Road Networks by Listing Strong Orientations.”, Combinatorial Algorithms, Proceedings of 27th International Workshop, IWOCA 2016, August 17-19, 2016, pages 83–95.

Ch2012

Cho-Ho Chu. Jordan Structures in Geometry and Analysis. Cambridge University Press, New York. 2012. IBSN 978-1-107-01617-0.

Cha92

Chameni-Nembua C. and Monjardet B. Les Treillis Pseudocomplémentés Finis Europ. J. Combinatorics (1992) 13, 89-107.

Cha18

Frédéric Chapoton, Some properties of a new partial order on Dyck paths, 2018, arXiv 1809.10981

Cha22005

B. Cha. Vanishing of some cohomology goups and bounds for the Shafarevich-Tate groups of elliptic curves. J. Number Theory, 111:154-178, 2005.

Cha2008

Frédéric Chapoton. Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar. Combin. (2008). arXiv math/0602368v1.

ChLi

F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, International Math. Research Notices (2001) no 8, pages 395-408. Preprint: arXiv math/0002069v2.

Cha2006

Ruth Charney. An introduction to right-angled Artin groups. http://people.brandeis.edu/~charney/papers/RAAGfinal.pdf, arXiv math/0610668.

ChenDB

Eric Chen, Online database of two-weight codes, http://moodle.tec.hkr.se/~chen/research/2-weight-codes/search.php

CHK2001

Keith D. Cooper, Timothy J. Harvey and Ken Kennedy. A Simple, Fast Dominance Algorithm, Software practice and Experience, 4:1-10 (2001). http://www.hipersoft.rice.edu/grads/publications/dom14.pdf

Chu2007

F. Chung, Random walks and local cuts in graphs, Linear Algebra and its Applications 423 (2007), no. 1, 22-32.

CHPSS18

C. Cid, T. Huang, T. Peyrin, Y. Sasaki, L. Song. Boomerang Connectivity Table: A New Cryptanalysis Tool (2018) IACR Transactions on Symmetric Cryptology. Vol 2017, Issue 4. pre-print available at https://eprint.iacr.org/2018/161.pdf

CIA

CIA Factbook 09 https://www.cia.gov/library/publications/the-world-factbook/

CK1986

R. Calderbank, W.M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18(1986) 97-122. doi:10.1112/blms/18.2.97.

CK1999

David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.

CK2008

Derek G. Corneil and Richard M. Krueger, A Unified View of Graph Searching, SIAM Jounal on Discrete Mathematics, 22(4), 1259–-1276, 2008. doi:10.1137/050623498

CK2001

M. Casella and W. Kühnel, “A triangulated K3 surface with the minimum number of vertices”, Topology 40 (2001), 753–772.

CKS1999

Felipe Cucker, Pascal Koiran, and Stephen Smale. A polynomial-time algorithm for diophantine equations in one variable, J. Symbolic Computation 27 (1), 21-29, 1999.

CK2015

J. Campbell and V. Knight. On testing degeneracy of bi-matrix games. http://vknight.org/unpeudemath/code/2015/06/25/on_testing_degeneracy_of_games/ (2015)

CL1996

Chartrand, G. and Lesniak, L.: Graphs and Digraphs. Chapman and Hall/CRC, 1996.

CL2002

Chung, Fan and Lu, L. Connected components in random graphs with given expected degree sequences. Ann. Combinatorics (6), 2002 pp. 125-145. doi:10.1007/PL00012580.

CL2017

Xavier Caruso and Jérémy Le Borgne, A new faster algorithm for factoring skew polynomials over finite fields J. Symbolic Comput. 79 (2017), 411-443.

CL2013

Maria Chlouveraki and Sofia Lambropoulou. The Yokonuma-Hecke algebras and the HOMFLYPT polynomial. (2015) arXiv 1204.1871v4.

Cle1872

Alfred Clebsch, Theorie der binären algebraischen Formen, Teubner, 1872.

CLG1997

Frank Celler and C. R. Leedham-Green, Calculating the Order of an Invertible Matrix, 1997

CLRS2001

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Section 22.4: Topological sort, Introduction to Algorithms (2nd ed.), MIT Press and McGraw-Hill, 2001, 549-552, ISBN 0-262-03293-7.

CLO2005

D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Springer, 2005.

CLS2011

David A. Cox, John Little, and Hal Schenck. Toric Varieties. Volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.

CLS2014

C. Ceballos, J.-P. Labbé, C. Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb. 39 (2014) pp. 17-51. doi:10.1007/s10801-013-0437-x, arXiv 1108.1776.

CMN2014

David Coudert, Dorian Mazauric, and Nicolas Nisse, Experimental Evaluation of a Branch and Bound Algorithm for computing Pathwidth. In Symposium on Experimental Algorithms (SEA), volume 8504 of LNCS, Copenhagen, Denmark, pages 46-58, June 2014, doi:10.1007/978-3-319-07959-2_5, https://hal.inria.fr/hal-00943549/document

CMO2011

C. Chun, D. Mayhew, J. Oxley, A chain theorem for internally 4-connected binary matroids. J. Combin. Theory Ser. B 101 (2011), 141-189.

CMO2012

C. Chun, D. Mayhew, J. Oxley, Towards a splitter theorem for internally 4-connected binary matroids. J. Combin. Theory Ser. B 102 (2012), 688-700.

CMR2005

C. Cid, S. Murphy, M. Robshaw, Small Scale Variants of the AES; in Proceedings of Fast Software Encryption 2005; LNCS 3557; Springer Verlag 2005; available at http://www.isg.rhul.ac.uk/~sean/smallAES-fse05.pdf

CMR2006

C. Cid, S. Murphy, and M. Robshaw, Algebraic Aspects of the Advanced Encryption Standard; Springer Verlag 2006

CMT2003

A. M. Cohen, S. H. Murray, D. E. Talyor. Computing in groups of Lie type. Mathematics of Computation. 73 (2003), no 247. pp. 1477–1498. https://www.win.tue.nl/~amc/pub/papers/cmt.pdf

CN2019

B. Chakraborty, M. Nandi “Orange” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/orange-spec.pdf

CrNa2020

J.E. Cremona and F. Najman, \(\QQ\)-curves over odd degree number fields, arXiv 2004.10054.

CoCo1

J.H. Conway, H.S.M. Coxeter Triangulated polygons and frieze patterns, The Mathematical Gazette (1973) 57 p.87-94

CoCo2

J.H. Conway, H.S.M. Coxeter Triangulated polygons and frieze patterns (continued), The Mathematical Gazette (1973) 57 p.175-183

Co1984

J. Conway, Hexacode and tetracode - MINIMOG and MOG. Computational group theory, ed. M. Atkinson, Academic Press, 1984.

CO2010

Jonathan Comes, Viktor Ostrik. On blocks of Deligne’s category \(\underline{\mathrm{Rep}}(S_t)\). arXiv 0910.5695v2, http://pages.uoregon.edu/jcomes/blocks.pdf

Coh1981

A. M. Cohen, A synopsis of known distance-regular graphs with large diameters, Stichting Mathematisch Centrum, 1981. http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-6775

Coh1993

Henri Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, 1993.

Coh2000

Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000.

Coh2007I

Henri Cohen, Number Theory, Vol. I: Tools and Diophantine Equations. GTM 239, Springer, 2007.

Coh2007

Henri Cohen, Number Theory, Volume II. Graduate Texts in Mathematics 240. Springer, 2007.

Coh2019

Nathann Cohen, Several Graph problems and their Linear Program formulations, 2019. https://hal.archives-ouvertes.fr/inria-00504914/en

Coj2005

Alina Carmen Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic curves. With an appendix by Ernst Kani. Canad. Math. Bull. 48 (2005), no. 1, 16–31.

Col2004

Pierre Colmez, Invariant \(\mathcal{L}\) et derivees de valeurs propres de Frobenius, preprint, 2004.

Col2013

Julia Collins. An algorithm for computing the Seifert matrix of a link from a braid representation. (2013). http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf

Com2019

Camille Combe, Réalisation cubique du poset des intervalles de Tamari, preprint arXiv 1904.00658

Con

Keith Conrad, Groups of order 12, http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/group12.pdf, accessed 21 October 2009.

Con2013

Keith Conrad: Exterior powers, http://www.math.uconn.edu/~kconrad/blurbs/

Con2015

Keith Conrad: Tensor products, http://www.math.uconn.edu/~kconrad/blurbs/

Con2018

Anthony Conway, Notes On The Levine-Tristram Signature Function, July 2018 http://www.unige.ch/math/folks/conway/Notes/LevineTristramSurvey.pdf

Coo2006

K. Coolsaet, The uniqueness of the strongly regular graph srg(105,32,4,12), Bull. Belg. Math. Soc. 12(2006), 707-718. http://projecteuclid.org/euclid.bbms/1136902608

Cou2014

Alain Couvreur, Codes and the Cartier operator, Proceedings of the American Mathematical Society 142.6 (2014): 1983-1996.

Cox

David Cox, “What is a Toric Variety”, https://dacox.people.amherst.edu/lectures/tutorial.ps

Cox1957

H. S. M. Coxeter: Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancouver 1957), pp. 95-122.

Cox1969

Harold S. M. Coxeter, Introduction to Geometry, 2nd ed. New York:Wiley, 1969.

CP2001

John Crisp and Luis Paris. The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145 (2001). No 1, 19-36. arXiv math/0003133.

CP2005

A. Cossidente and T. Penttila, Hemisystems on the Hermitian surface, Journal of London Math. Soc. 72(2005), 731–741. doi:10.1112/S0024610705006964.

CP2012

Grégory Châtel, Viviane Pons. Counting smaller trees in the Tamari order, arXiv 1212.0751v1.

CP2015

Grégory Châtel and Viviane Pons. Counting smaller elements in the tamari and m-tamari lattices. Journal of Combinatorial Theory, Series A. (2015). arXiv 1311.3922.

CP2016

N. Cohen, D. Pasechnik, Implementing Brouwer’s database of strongly regular graphs, Designs, Codes, and Cryptography, 2016 doi:10.1007/s10623-016-0264-x

CPdA2014

Maria Chlouveraki and Loïc Poulain d’Andecy. Representation theory of the Yokonuma-Hecke algebra. (2014) arXiv 1302.6225v2.

CPS2006

J.E. Cremona, M. Prickett and S. Siksek, Height Difference Bounds For Elliptic Curves over Number Fields, Journal of Number Theory 116(1) (2006), pages 42-68.

CR1962

Curtis, Charles W.; Reiner, Irving “Representation theory of finite groups and associative algebras.” Pure and Applied Mathematics, Vol. XI Interscience Publishers, a division of John Wiley & Sons, New York-London 1962, pp 545–547

Cre1997

J. E. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, 1997.

Cre2003

Cressman, Ross. Evolutionary dynamics and extensive form games. MIT Press, 2003.

Cre2020

Creedon, Samuel. The center of the partition algebra. Preprint, arXiv 2005.00600 (2020).

Cro1983

M. Crochemore, Recherche linéaire d’un carré dans un mot, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 14 781–784.

CRS2016

Dean Crnković, Sanja Rukavina, and Andrea Švob. Strongly regular graphs from orthogonal groups \(O^+(6,2)\) and \(O^-(6,2)\). arXiv 1609.07133

CRST2006

M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Annals of Mathematics, vol 164, number 1, pages 51–230, 2006.

CRV2018

Xavier Caruso, David Roe and Tristan Vaccon. ZpL: a p-adic precision package, (2018) arXiv 1802.08532.

CRV2014

Xavier Caruso, David Roe and Tristan Vaccon. Tracking p-adic precision, LMS J. Comput. Math. 17 (2014), 274-294.

CS1986

J. Conway and N. Sloane. Lexicographic codes: error-correcting codes from game theory, IEEE Trans. Infor. Theory 32 (1986) 337-348.

CS1999

J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd. ed., Grundlehren der Mathematischen Wissenschaften, vol. 290, Springer-Verlag, New York, 1999.

CS1988

Conway, J. H., and N. J. A. Sloane. “Low-Dimensional Lattices. IV. The Mass Formula.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 419, no. 1857, 1988, pp. 259-286.

CS2003

John E. Cremona and Michael Stoll. On The Reduction Theory of Binary Forms. Journal für die reine und angewandte Mathematik, 565 (2003), 79-99.

CS2006

J. E. Cremona, and S. Siksek, Computing a Lower Bound for the Canonical Height on Elliptic Curves over \(\QQ\), ANTS VII Proceedings: F.Hess, S.Pauli and M.Pohst (eds.), ANTS VII, Lecture Notes in Computer Science 4076 (2006), pages 275-286.

CST2010

Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli. Representation Theory of the Symmetric Groups: The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras. CUP 2010.

CT2013

J. E. Cremona and T. Thongjunthug, The Complex AGM, periods of elliptic curves over $CC$ and complex elliptic logarithms. Journal of Number Theory Volume 133, Issue 8, August 2013, pages 2813-2841.

CTTL2014

C. Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao: New Construction of Differentially 4-Uniform Bijections, Inscrypt, pp. 22-38, 2013.

CT1998

F. Chung and P. Tetali, Isoperimetric inequalities for Cartesian products of graphs, Combinatorics, Probability and Computing 7 (1998), no. 2, 141-148.

Cu1984

R. Curtis, The Steiner system \(S(5,6,12)\), the Mathieu group \(M_{12}\), and the kitten. Computational group theory, ed. M. Atkinson, Academic Press, 1984.

Cun1986

W. H. Cunningham, Improved Bounds for Matroid Partition and Intersection Algorithms. SIAM Journal on Computing 1986 15:4, 948-957.

CVV2019

Xavier Caruso, Tristan Vaccon and Thibaut Verron, Gröbner bases over Tate algebras, arXiv 1901.09574 (2019)

CVV2020

Xavier Caruso, Tristan Vaccon and Thibaut Verron, Signature-based algorithms for Gröbner bases over Tate algebras, arXiv 2002.04491 (2020)

CW2005

J. E. Cremona and M. Watkins. Computing isogenies of elliptic curves. preprint, 2005.

D

Dat2007

Basudeb Datta, “Minimal triangulations of manifolds”, J. Indian Inst. Sci. 87 (2007), no. 4, 429-449.

Dav1997

B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1997.

DB1996

K. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Mathematics and Its Applications, 1996.

DCSW2008

C. De Canniere, H. Sato, D. Watanabe, Hash Function Luffa: Specification; submitted to NIST SHA-3 Competition, 2008. Available at http://www.sdl.hitachi.co.jp/crypto/luffa/

DCW2016

Dan-Cohen, Ishai, and Stefan Wewers. “Mixed Tate motives and the unit equation.” International Mathematics Research Notices 2016.17 (2016): 5291-5354.

DD1991

R. Dipper and S. Donkin. Quantum \(GL_n\). Proc. London Math. Soc. (3) 63 (1991), no. 1, pp. 165-211.

DD2010

Tim Dokchitser and Vladimir Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. Math. (2) 172 (2010), 567-596.

DDLL2013

Léo Ducas, Alain Durmus, Tancrède Lepoint and Vadim Lyubashevsky. Lattice Signatures and Bimodal Gaussians; in Advances in Cryptology – CRYPTO 2013; Lecture Notes in Computer Science Volume 8042, 2013, pp 40-56 http://www.di.ens.fr/~lyubash/papers/bimodal.pdf

Dec1998

W. Decker and T. de Jong. Groebner Bases and Invariant Theory in Groebner Bases and Applications. London Mathematical Society Lecture Note Series No. 251. (1998) 61–89.

DEMS2016

C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, Ascon v1.2; in CAESAR Competition, (2016).

DEMMMPU2019

C. Dobraunig, M. Eichseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, T. Unterluggauer “ISAP v2.0” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf

De1973

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep., Suppl., vol. 10, 1973.

De1970

M. Demazure Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. Ecole Norm. Sup. 1970, 3, 507–588.

De1974

M. Demazure, Désingularisation des variétés de Schubert, Ann. E. N. S., Vol. 6, (1974), p. 163-172

Deh2011

P. Dehornoy, Le problème d’isotopie des tresses, in Leçons mathématiques de Bordeaux, vol. 4, pages 259-300, Cassini (2011).

deG2000

Willem A. de Graaf. Lie Algebras: Theory and Algorithms. North-Holland Mathematical Library. (2000). Elsevier Science B.V.

deG2005

Willem A. de Graaf. Constructing homomorphisms between Verma modules. Journal of Lie Theory. 15 (2005) pp. 415-428.

Dej1972

F. Dejean. Sur un théorème de Thue. J. Combinatorial Theory Ser. A 13:90–99, 1972.

Del1972

Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Mathematics (1972), Volume 3, Issue 1, Pages 47-64, doi:10.1016/0012-365X(72)90024-6

Den2012

Tom Denton. Canonical Decompositions of Affine Permutations, Affine Codes, and Split \(k\)-Schur Functions. Electronic Journal of Combinatorics, 2012.

Deo1987a

V. Deodhar, A splitting criterion for the Bruhat orderings on Coxeter groups. Comm. Algebra, 15:1889-1894, 1987.

Deo1987b

V.V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Alg. 111 (1987) 483-506.

DesignHandbook

Handbook of Combinatorial Designs (2ed) Charles Colbourn, Jeffrey Dinitz Chapman & Hall/CRC 2012

DerZak1980

Nachum Dershowitz and Schmuel Zaks, Enumerations of ordered trees, Discrete Mathematics (1980), 31: 9-28.

Dev2005

Devaney, Robert L. An Introduction to Chaotic Dynamical Systems. Boulder: Westview, 2005, 331.

DeVi1984

M.-P. Delest, and G. Viennot, Algebraic Languages and Polyominoes Enumeration. Theoret. Comput. Sci. 34, 169-206, 1984.

DFMS1996

Philipppe Di Francesco, Pierre Mathieu, and David Sénéchal. Conformal Field Theory. Graduate Texts in Contemporary Physics, Springer, 1996.

DG1982

Louise Dolan and Michael Grady. Conserved charges from self-duality, Phys. Rev. D(3) 25 (1982), no. 6, 1587-1604.

DG1994

S. Dulucq and O. Guibert. Mots de piles, tableaux standards et permutations de Baxter, proceedings of Formal Power Series and Algebraic Combinatorics, 1994.

DGH2020

C. Donnot, A. Genitrini and Y. Herida. Unranking Combinations Lexicographically: an efficient new strategy compared with others, 2020, https://hal.archives-ouvertes.fr/hal-02462764v1

DGMPPS2019

N. Datta, A. Ghoshal, D. Mukhopadhyay, S. Patranabis, S. Picek, R. Sashukhan. “TRIFLE” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf

DGRB2010

David Avis, Gabriel D. Rosenberg, Rahul Savani, Bernhard von Stengel. Enumeration of Nash equilibria for two-player games. http://www.maths.lse.ac.uk/personal/stengel/ETissue/ARSvS.pdf (2010)

DHSW2003

Dumas, Heckenbach, Saunders, Welker, “Computing simplicial homology based on efficient Smith normal form algorithms,” in “Algebra, geometry, and software systems” (2003), 177-206.

DI1989

Dan Gusfield and Robert W. Irving. The stable marriage problem: structure and algorithms. Vol. 54. Cambridge: MIT press, 1989.

DI1995

F. Diamond and J. Im, Modular forms and modular curves. In: V. Kumar Murty (ed.), Seminar on Fermat’s Last Theorem (Toronto, 1993-1994), 39-133. CMS Conference Proceedings 17. American Mathematical Society, 1995.

Dil1940

Lattice with Unique Irreducible Decompositions R. P. Dilworth, 1940 (Annals of Mathematics 41, 771-777) With comments by B. Monjardet http://cams.ehess.fr/docannexe.php?id=1145

Di2000

L. Dissett, Combinatorial and computational aspects of finite geometries, 2000, https://tspace.library.utoronto.ca/bitstream/1807/14575/1/NQ49844.pdf

DJM1998

R. Dipper, G. James and A. Mathas Cyclotomic q-Schur algebras, Math. Z, 229 (1998), 385-416. MathSciNet MR1658581

DJP2001

X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001) 539–553.

DK2013

John R. Doyle and David Krumm, Computing algebraic numbers of bounded height, arXiv 1111.4963v4 (2013).

DLHK2007

J. A. De Loera, D. C. Haws, M. Köppe, Ehrhart polynomials of matroid polytopes and polymatroids. Discrete & Computational Geometry, Volume 42, Issue 4. arXiv 0710.4346, doi:10.1007/s00454-008-9120-8

DLMF-Bessel

F. W. J. Olver and L. C. Maximon: 10. Bessel Functions, in NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/10

DLMF-Error

N. M. Temme: 7. Error Functions, Dawson’s and Fresnel Integrals, in NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/7

DLMF-Legendre

T. M. Dunster: Legendre and Related Functions, in NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/14

DLMF-Struve

R. B. Paris: 11. Struve and Related Functions, in NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/11

DLRS2010

De Loera, Rambau and Santos, “Triangulations: Structures for Algorithms and Applications”, Algorithms and Computation in Mathematics, Volume 25, Springer, 2011.

DN1990

Claude Danthony and Arnaldo Nogueira, Measured foliations on nonorientable surfaces, Annales scientifiques de l’École Normale Supérieure, Sér. 4, 23, no. 3 (1990) p 469-494

DNB1996

Feodor F. Dragan, Falk Nicolai, Andreas Brandstat. LexBFS-orderings and powers of graphs. International Workshop on Graph-Theoretic Concepts in Computer Science, WG 1996. Lecture Notes in Computer Science, vol 1197. Springer, Berlin, Heidelberg. doi:10.1007/3-540-62559-3_15

Do2009

P. Dobcsanyi et al. DesignTheory.org. http://designtheory.org/database/

Dob1999a

H. Dobbertin: Almost perfect nonlinear power functions on GF(2^n): the Niho case. Information and Computation, 151 (1-2), pp. 57-72, 1999.

Dob1999b

H. Dobbertin: Almost perfect nonlinear power functions on GF(2^n): the Welch case. IEEE Transactions on Information Theory, 45 (4), pp. 1271-1275, 1999.

Dol2009

Igor Dolgachev. McKay Correspondence. (2009). http://www.math.lsa.umich.edu/~idolga/McKaybook.pdf

dotspec

http://www.graphviz.org/doc/info/lang.html

DPS2017

Kevin Dilks, Oliver Pechenik, and Jessica Striker, Resonance in orbits of plane partitions and increasing tableaux, JCTA 148 (2017), 244-274, https://doi.org/10.1016/j.jcta.2016.12.007

DPV2001

J. Daemen, M. Peeters, and G. Van Assche, Bitslice ciphers and power analysis attacks; in FSE, (2000), pp. 134-149.

DP2008

Jean-Guillaume Dumas and Clement Pernet. Memory efficient scheduling of Strassen-Winograd’s matrix multiplication algorithm. arXiv 0707.2347v1, 2008.

DPVAR2000

J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, Nessie proposal: NOEKEON; in First Open NESSIE Workshop, (2000).

DR2002

Joan Daemen, Vincent Rijmen. The Design of Rijndael. Springer-Verlag Berlin Heidelberg, 2002.

Dragan2018

Feodor Dragan, Michel Habib, Laurent Viennot. Revisiting Radius, Diameter, and all Eccentricity Computation in Graphs through Certificates. http://arxiv.org/abs/1803.04660

Dro1987

Carl Droms. Isomorphisms of graph groups. Proc. of the Amer. Math. Soc. 100 (1987). No 3. http://educ.jmu.edu/~dromscg/vita/preprints/Isomorphisms.pdf

DS1994

J. Dalbec and B. Sturmfels. Invariant methods in discrete and computational geometry, chapter Introduction to Chow forms, pages 37-58. Springer Netherlands, 1994.

DS2004

Dan Gusfield, Jens Stoye, Linear time algorithms for finding and representing all the tandem repeats in a string, Journal of Computer and System Sciences, Volume 69, Issue 4, 2004, Pages 525-546, https://doi.org/10.1016/j.jcss.2004.03.004.

DS2009

W. Decker, F.-O. Schreyer, Varieties, Gröbner Bases, and Algebraic Curves, 2009. https://www.math.uni-sb.de/ag/schreyer/images/PDFs/teaching/ws1617ag/book.pdf

DS2010

K. Duggal, B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, 2010.

DSK2006

A. De Sole and V. Kac. “Finite vs Affine W-algebras”. Jpn. J. Math. (2006) vol. 1, no. 1, pp 137–261

Du2001

I. Duursma, “From weight enumerators to zeta functions”, in Discrete Applied Mathematics, vol. 111, no. 1-2, pp. 55-73, 2001.

Du2003

I. Duursma, “Extremal weight enumerators and ultraspherical polynomials”, Discrete Mathematics 268 (2003), 103–127.

Du2004

I. Duursma, “Combinatorics of the two-variable zeta function”, Finite fields and applications, 109-136, Lecture Notes in Comput. Sci., 2948, Springer, Berlin, 2004.

Du2009

Du Ye. On the Complexity of Deciding Degeneracy in Games. arXiv 0905.3012v1 (2009)

Du2010

J. J. Duistermaat, Discrete integrable systems. QRT maps and elliptic surfaces. Springer Monographs in Mathematics. Berlin: Springer. xxii, 627 p., 2010

Du2018

O. Dunkelman, Efficient Construction of the Boomerang Connection Table (preprint); in Cryptology ePrint Archive, (2018), 631.

Duc1998

L. Ducos, Optimizations of the Subresultant Algorithm. http://www-math.univ-poitiers.fr/~ducos/Travaux/sous-resultants.pdf

Dur1998

F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998) 89-101.

Duv1983

J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363–381.

DW1995

Andreas W.M. Dress and Walter Wenzel, A Simple Proof of an Identity Concerning Pfaffians of Skew Symmetric Matrices, Advances in Mathematics, volume 112, Issue 1, April 1995, pp. 120-134. http://www.sciencedirect.com/science/article/pii/S0001870885710298

DW2007

I. Dynnikov and B. Wiest, On the complexity of braids, J. Europ. Math. Soc. 9 (2007)

Dy1993

M. J. Dyer. Hecke algebras and shellings of Bruhat intervals. Compositio Mathematica, 1993, 89(1): 91-115.

E

Early2017

Nick Early. Canonical bases for permutohedral plates. Preprint (2017). arXiv 1712.08520v3.

Eb1989

W. Eberly, “Computations for algebras and group representations”. Ph.D. Thesis, University of Toronto, 1989. http://www.cpsc.ucalgary.ca/~eberly/Research/Papers/phdthesis.pdf

Ed1974

A. R. Edmonds, ‘Angular Momentum in Quantum Mechanics’, Princeton University Press (1974)

EDI2014

EDITH COHEN,DANIEL DELLING,THOMAS PAJOR and RENATO F. WERNECK Computing Classic Closeness Centrality, at Scale In Proceedings of the second ACM conference on Online social networks (COSN ‘14) doi:10.1145/2660460.2660465

Edix

Edixhoven, B., Point counting after Kedlaya, EIDMA-Stieltjes graduate course, Leiden (notes: https://www.math.leidenuniv.nl/~edix/oww/mathofcrypt/carls_edixhoven/kedlaya.pdf)

Ega1981

Yoshimi Egawa, Characterization of H(n, q) by the parameters, Journal of Combinatorial Theory, Series A, Volume 31, Issue 2, 1981, Pages 108-125, ISSN 0097-3165,:doi:\(10.1016/0097-3165(81)90007-8\). (http://www.sciencedirect.com/science/article/pii/0097316581900078)

EGNO2015

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych and Victor Ostrik, Tensor Categories, AMS Mathematical Surveys and Monographs 205 (2015).

EGHLSVY

Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, “Introduction to representation theory”, arXiv 0901.0827v5.

EKLP1992

N. Elkies, G. Kuperberg, M. Larsen, J. Propp, Alternating-Sign Matrices and Domino Tilings, Journal of Algebraic Combinatorics, volume 1 (1992), p. 111-132.

Eh2013

Ehrhardt, Wolfgang. “The AMath and DAMath Special Functions: Reference Manual and Implementation Notes, Version 1.3”. 2013. http://www.wolfgang-ehrhardt.de/specialfunctions.pdf.

EL2002

Ekedahl, Torsten & Laksov, Dan. (2002). Splitting algebras, Symmetric functions and Galois Theory. J. Algebra Appl. 4, doi:10.1142/S0219498805001034

EM2001

Pavel Etingof and Xiaoguang Ma. Lecture notes on Cherednik algebras. http://www-math.mit.edu/~etingof/73509.pdf arXiv 1001.0432.

EMMN1998

P. Eaded, J. Marks, P.Mutzel, S. North. Fifth Annual Graph Drawing Contest; http://www.merl.com/papers/docs/TR98-16.pdf

Eny2012

J. Enyang. Jucys-Murphy elements and a presentation for the partition algebra. J. Algebraic Combin. 37 (2012) no 3, 401–454.

Eny2013

J. Enyang. A seminormal form for partition algebras. J. Combin. Theory Series A 120 (2013) 1737–1785.

EP2013

David Einstein, James Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. arXiv 1310.5294v1.

EP2013b

David Einstein, James Propp. Piecewise-linear and birational toggling. Extended abstract for FPSAC 2014. http://faculty.uml.edu/jpropp/fpsac14.pdf

Epp2008

David Eppstein, Recognizing partial cubes in quadratic time, J. Graph Algorithms and Applications 15 (2): 269-293, 2011. doi:10.7155/jgaa.00226, arXiv 0705.1025.

Eri1995

H. Erikson. Computational and Combinatorial Aspects of Coxeter Groups. Thesis, 1995.

ER1959

Paul ErdH{o}s and Alfr'ed R'enyi. “On Random Graphs”, Publicationes Mathematicae. 6: 290–297, 1959.

ERH2015

Jorge Espanoza and Steen Ryom-Hansen. Cell structures for the Yokonuma-Hecke algebra and the algebra of braids and ties. (2015) arXiv 1506.00715.

ERT1979

Erdos, P. and Rubin, A.L. and Taylor, H. Choosability in graphs. Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol 26, pages 125–157, 1979.

ESSS2011

D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith, The Hummingbird-2 lightweight authenticated encryption algorithm; in RFIDSec, (2011), pp. 19-31.

ETS2006a

ETSI/Sage, Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2; in Document 5: Design and Evaluation Report, (2006).

ETS2011

ETSI/Sage, Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3; in Document 4: Design and Evaluation Report, (2011).

Ewa1996

Ewald, “Combinatorial Convexity and Algebraic Geometry”, vol. 168 of Graduate Texts in Mathematics, Springer, 1996

EZ1950

S. Eilenberg and J. Zilber, “Semi-Simplicial Complexes and Singular Homology”, Ann. Math. (2) 51 (1950), 499-513.

EPW14

Ben Elias, Nicholas Proudfoot, and Max Wakefield. The Kazhdan-Lusztig polynomial of a matroid. 2014. arXiv 1412.7408.

F

Fag1983

Fagin, Ronald. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM (JACM) 30.3 (1983): 514-550.

Fayers2010

Matthew Fayers. An LLT-type algorithm for computing higher-level canonical bases. J. Pure Appl. Algebra 214 (2010), no. 12, 2186-2198. arXiv 0908.1749v3.

Fedorov2015

Roman Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, arXiv 1505.01704

Fe1997

Stefan Felsner, “On the Number of Arrangements of Pseudolines”, Proceedings SoCG 96, 30-37. Discrete & Computational Geometry 18 (1997), 257-267. http://page.math.tu-berlin.de/~felsner/Paper/numarr.pdf

FT00

Stefan Felsner, William T. Trotter, Dimension, Graph and Hypergraph Coloring, Order, 2000, Volume 17, Issue 2, pp 167-177, http://link.springer.com/article/10.1023%2FA%3A1006429830221

Feng2014

Gang Feng, Finding k shortest simple paths in directed graphs: A node classification algorithm. Networks, 64(1), 6–17, 2014. doi:10.1002/net.21552

Fe2012

Hans L. Fetter, “A Polyhedron Full of Surprises”, Mathematics Magazine 85 (2012), no. 5, 334-342.

Fed2015

Federal Agency on Technical Regulation and Metrology (GOST), GOST R 34.12-2015, (2015)

Feingold2004

Alex J. Feingold. Fusion rules for affine Kac-Moody algebras. Contemp. Math., 343 (2004), pp. 53-96. arXiv math/0212387

Fel2001

Yves Felix, Stephen Halperin and J.-C. Thomas. Rational homotopy theory, Graduate texts in mathematics 201, Springer, 2001.

Feu2009

T. Feulner. The Automorphism Groups of Linear Codes and Canonical Representatives of Their Semilinear Isometry Classes. Advances in Mathematics of Communications 3 (4), pp. 363-383, Nov 2009

Feu2013

Feulner, Thomas, “Eine kanonische Form zur Darstellung aequivalenter Codes – Computergestuetzte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie”, Dissertation, University of Bayreuth, 2013.

FG1965

Fulkerson, D.R. and Gross, OA, Incidence matrices and interval graphs. Pacific J. Math 1965, Vol. 15, number 3, pages 835–855. doi:10.2140/pjm.1965.15.835.

FH2015

J. A. de Faria, B. Hutz. Combinatorics of Cycle Lengths on Wehler K3 Surfaces over finite fields. New Zealand Journal of Mathematics 45 (2015), 19–31.

FIV2012

H. Fournier, A. Ismail, and A. Vigneron. Computing the Gromov hyperbolicity of a discrete metric space. 2012. arXiv 1210.3323.

FK1991

I. A. Faradjev and M. H. Klin, Computer package for computations with coherent configurations, Proc. ISSAC-91, ACM Press, Bonn, 1991, pages 219-223; code, by I.A.Faradjev (with contributions by A.E.Brouwer, D.V.Pasechnik). https://github.com/dimpase/coco

FL2001

David Forge and Michel Las Vergnas. Orlik-Solomon type algebras. European J. Combin. 22 (5), (2001). pp. 699-704.

FM2014

Cameron Franc and Marc Masdeu, Computing fundamental domains for the Bruhat-Tits tree for GL_2(Qp), p-adic automorphic forms, and the canonical embedding of Shimura curves. LMS Journal of Computation and Mathematics (2014), volume 17, issue 01, pp. 1-23.

FMSS1995

Fulton, MacPherson, Sottile, Sturmfels: Intersection theory on spherical varieties, J. of Alg. Geometry 4 (1995), 181-193. http://www.math.tamu.edu/~frank.sottile/research/ps/spherical.ps.gz

FMV2014

Xander Faber, Michelle Manes, and Bianca Viray. Computing Conjugating Sets and Automorphism Groups of Rational Functions. Journal of Algebra, 423 (2014), 1161-1190.

FNO2019

Hans Fotsing Tetsing, Ferdinand Ngakeu and Benjamin Olea, Rigging technique for 1-lightlike submanifolds and preferred rigged connections, Mediterranean Journal of Mathematics, (2019).

Fog2002

N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics, and Combinatorics, Lecture Notes in Mathematics 1794, Springer Verlag. V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel, Eds. (2002).

Fom1994

Sergey V. Fomin, “Duality of graded graphs”. Journal of Algebraic Combinatorics Volume 3, Number 4 (1994), pp. 357-404.

Fom1995

Sergey V. Fomin, “Schensted algorithms for dual graded graphs”. Journal of Algebraic Combinatorics Volume 4, Number 1 (1995), pp. 5-45.

FoiMal14

Loic Foissy, Claudia Malvenuto, The Hopf algebra of finite topologies and T-partitions, Journal of Algebra, Volume 438, 15 September 2015, pp. 130–169, doi:10.1016/j.jalgebra.2015.04.024, arXiv 1407.0476v2.

FoSta1994

S. Fomin, R. Stanley. Schubert polynomials and the nilCoxeter algebra. Advances in Math., 1994.

FOS2009

G. Fourier, M. Okado, A. Schilling. Kirillov-Reshetikhin crystals for nonexceptional types. Advances in Mathematics. 222 (2009). Issue 3. 1080-1116. arXiv 0810.5067.

FOS2010

G. Fourier, M. Okado, A. Schilling. Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. Contemp. Math. 506 (2010) 127-143 ( arXiv 0811.1604 )

FP1996

Komei Fukuda, Alain Prodon: Double Description Method Revisited, Combinatorics and Computer Science, volume 1120 of Lecture Notes in Computer Science, page 91-111. Springer (1996)

FPR2015

Wenjie Fang and Louis-François Préville-Ratelle, From generalized Tamari intervals to non-separable planar maps. arXiv 1511.05937

FR1985

Friedl, Katalin, and Lajos Rónyai. “Polynomial time solutions of some problems of computational algebra”. Proceedings of the seventeenth annual ACM symposium on Theory of computing. ACM, 1985.

Fra2011

Cameron Franc, “Nearly rigid analytic modular forms and their values at CM points”, Ph.D. thesis, McGill University, 2011.

FRT1990

Faddeev, Reshetikhin and Takhtajan. Quantization of Lie Groups and Lie Algebras. Leningrad Math. J. vol. 1 (1990), no. 1.

FS1978

Dominique Foata, Marcel-Paul Schuetzenberger. Major Index and Inversion Number of Permutations. Mathematische Nachrichten, volume 83, Issue 1, pages 143-159, 1978. http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1978-3MajorIndexMathNachr.pdf

FS1994

William Fulton, Bernd Sturmfels, Intersection Theory on Toric Varieties, arXiv alg-geom/9403002

FS2009

Philippe Flajolet and Robert Sedgewick, Analytic combinatorics. Cambridge University Press, Cambridge, 2009. See also the Errata list.

FST2012

A. Felikson, M. Shapiro, and P. Tumarkin, Cluster Algebras of Finite Mutation Type Via Unfoldings, Int Math Res Notices (2012) 2012 (8): 1768-1804.

Fuchs1994

J. Fuchs. Fusion Rules for Conformal Field Theory. Fortsch. Phys. 42 (1994), no. 1, pp. 1-48. doi:10.1002/prop.2190420102, arXiv hep-th/9306162.

Ful1989

W. Fulton. Algebraic curves: an introduction to algebraic geometry. Addison-Wesley, Redwood City CA (1989).

Ful1993

Wiliam Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

Ful1997

William Fulton, Young Tableaux. Cambridge University Press, 1997.

FV2002

I. Fagnot, L. Vuillon, Generalized balances in Sturmian words, Discrete Applied Mathematics 121 (2002), 83–101.

FY2004

Eva Maria Feichtner and Sergey Yuzvinsky. Chow rings of toric varieties defined by atomic lattices. Inventiones Mathematicae. 155 (2004), no. 3, pp. 515-536.

FZ2001

S. Fomin and A. Zelevinsky. Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, pp. 497-529. arXiv math/0104151 (2001).

FZ2007

S. Fomin and A. Zelevinsky, Cluster algebras IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112-164.

G

Ga02

Shuhong Gao, A new algorithm for decoding Reed-Solomon Codes, January 31, 2002

Gallai

T. Gallai, Elementare Relationen bezueglich der Glieder und trennenden Punkte von Graphen, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 235-236

Gambit

Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy, Gambit: Software Tools for Game Theory, Version 13.1.2.. http://www.gambit-project.org (2014).

Gans1981

Emden R. Gansner, The Hillman-Grassl Correspondence and the Enumeration of Reverse Plane Partitions, Journal of Combinatorial Theory, Series A 30 (1981), pp. 71–89. doi:10.1016/0097-3165(81)90041-8

Gar2015

V. Garg Introduction to Lattice Theory with Computer Science Applications (2015), Wiley.

GDR1999

R. González-Díaz and P. Réal, A combinatorial method for computing Steenrod squares in J. Pure Appl. Algebra 139 (1999), 89-108.

GDR2003

R. González-Díaz and P. Réal, Computation of cohomology operations on finite simplicial complexes in Homology, Homotopy and Applications 5 (2003), 83-93.

GCL1992

Geddes, Czapor, Labahn, Algorithms for computer algebra. Springer (1992). ISBN 0-7923-9259-0.

Ge2005

Loukas Georgiadis, Linear-Time Algorithms for Dominators and Related Problems, PhD thesis, Princetown University, TR-737-05, (2005). ftp://ftp.cs.princeton.edu/reports/2005/737.pdf

GG2012

Jim Geelen and Bert Gerards, Characterizing graphic matroids by a system of linear equations, submitted, 2012. Preprint: http://www.gerardsbase.nl/papers/geelen_gerards=testing-graphicness%5B2013%5D.pdf

GGD2011

E. Girondo, G. Gonzalez-Diez, Introduction to Compact Riemann surfaces and Dessins d’enfant, (2011) London Mathematical Society, Student Text 79.

GGMM2020

A. Garver, S. Grosser, J. Matherne, and A. Morales. Counting linear extensions of posets with determinants of hook lengths. Preprint, arXiv 2001.08822 (2020).

GGNS2013

B. Gerard, V. Grosso, M. Naya-Plasencia, and F.-X. Standaert, Block ciphers that are easier to mask: How far can we go?; in CHES, (2013), pp. 383-399.

GGOR2003

V. Ginzberg, N. Guay, E. Opdam, R. Rouquier. On the category \(\mathcal{O}\) for rational Cherednik algebras. Invent. Math. 154 (2003). arXiv math/0212036.

GHJ2016

Ewgenij Gawrilow, Simon Hampe, and Michael Joswig, The polymake XML file format, Mathematical software – ICMS 2016. 5th international congress, Berlin, Germany, July 11–14, 2016. Proceedings, Berlin: Springer, 2016, pp. 403–410, https://doi.org/10.1007/978-3-319-42432-3_50, ISBN 978-3-319-42431-6/pbk.

GHJV1994

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1994). ISBN 0-201-63361-2.

Gil1959

Edgar Nelson Gilbert. “Random Graphs”, Annals of Mathematical Statistics. 30 (4): 1141–1144, 1959.

Gir2012

Samuele Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, arXiv 1204.4776v1.

GiTr1996

P. Gianni and B. Trager. Square-Free Algorithms in Positive Characteristic. Applicable Algebra In Engineering, Communication And Computing, 7(1), p. 1-14.

GJ1997

Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73.

GJ2006

Ewgenij Gawrilow and Michael Joswig, Flexible object hierarchies in polymake (extended abstract), Mathematical software—ICMS 2006, Lecture Notes in Comput. Sci., vol. 4151, Springer, Berlin, 2006, pp. 219–221, https://doi.org/10.1007/11832225_20

GJ2007

A. Glen, J. Justin, Episturmian words: a survey, Preprint, 2007, arXiv 0801.1655.

GJ2016

Muddappa Seetharama Gowda and Juyoung Jeong. Spectral cones in Euclidean Jordan algebras. Linear Algebra and its Applications, 509:286-305, 2016. doi:10.1016/j.laa.2016.08.004.

GJKPRSS2019

D. Goudarzi, J. Jean, S. Koelbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim. “Pyjamask” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Pyjamask-spec.pdf

GJK+2014

Dimitar Grantcharov, Ji Hye Jung, Seok-Jin Kang, Masaki Kashiwara, Myungho Kim. Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux.; Trans. Amer. Math. Soc., 366(1): 457-489, 2014. arXiv 1103.1456v2.

GJPST2009

G. Grigorov, A. Jorza, S. Patrikis, W. Stein, C. Tarniţǎ. Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves. Math. Comp. 78 (2009), no. 268, 2397–2425.

GJRW2010

Ewgenij Gawrilow, Michael Joswig, Thilo Rörig, and Nikolaus Witte, Drawing polytopal graphs with polymake, Comput. Vis. Sci. 13 (2010), no. 2, 99–110, https://doi.org/10.1007/s00791-009-0127-3

GK1982

Daniel H. Greene and Donald E. Knuth (1982), “2.1.1 Constant coefficients - A) Homogeneous equations”, Mathematics for the Analysis of Algorithms (2nd ed.), Birkhauser, p. 17.

GK2013

Roland Grinis and Alexander Kasprzyk, Normal forms of convex lattice polytopes, arXiv 1301.6641

GKZ1994

Gelfand, I. M.; Kapranov, M. M.; and Zelevinsky, A. V. “Discriminants, Resultants and Multidimensional Determinants” Birkhauser 1994

GL1996

G. Golub and C. van Loan. Matrix Computations. 3rd edition, Johns Hopkins Univ. Press, 1996.

GrLe1996

J. Graham and G.I. Lehrer Cellular algebras. Invent. Math. 123 (1996), 1–34. MathSciNet MR1376244

GLR2008

A. Glen, F. Levé, G. Richomme, Quasiperiodic and Lyndon episturmian words, Preprint, 2008, arXiv 0805.0730.

GLSV2014

V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici: LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations, in FSE, 2014.

GLSVJGK2014

V. Grosso, G. Leurent, F.-X. Standaert, K. Varici, F. D. A. Journault, L. Gaspar, and S. Kerckhof, SCREAM & iSCREAM Side-Channel Resistant Authenticated Encryption with Masking; in CAESAR Competition, (2014).

GM1987

Peter B. Gibbons and Rudolf Mathon. Construction methods for Bhaskar Rao and related designs. J. Austral. Math. Soc. Ser. A 42 (1987), no. 1, 5–30. http://journals.cambridge.org/article_S1446788700033929

GM2002

Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. Forum Mathematicum, 15:2, pp. 165–189, De Gruyter, 2003.

GMN2008

Jordi Guardia, Jesus Montes, Enric Nart. Newton polygons of higher order in algebraic number theory (2008). arXiv 0807.2620

GNL2011

Z. Gong, S. Nikova, and Y. W. Law, KLEIN: A new family of lightweight block ciphers; in RFIDSec, (2011), p. 1-18.

GN2018

Pascal Giorgi and Vincent Neiger. Certification of Minimal Approximant Bases. In ISSAC 2018, pages 167-174. https://doi.org/10.1145/3208976.3208991

Go1967

Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967

God1968

R. Godement: Algebra, Hermann (Paris) / Houghton Mifflin (Boston) (1968)

God1993

Chris Godsil (1993): Algebraic Combinatorics.

Gol1968

R. Gold: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Transactions on Information Theory, 14, pp. 154-156, 1968.

Gop1981

V. D. Goppa, “Codes on algebraic curves,” Sov. Math. Dokl., vol. 24, no. 1, pp. 170–172, 1981.

Gos1972

Bill Gosper, “Continued Fraction Arithmetic” https://perl.plover.com/classes/cftalk/INFO/gosper.txt

Gor1980

Daniel Gorenstein, Finite Groups (New York: Chelsea Publishing, 1980)

Gor2009

Alexey G. Gorinov, “Combinatorics of double cosets and fundamental domains for the subgroups of the modular group”, preprint arXiv 0901.1340

GP2012

Eddy Godelle and Luis Paris. Basic questions on Artin-Tits groups. A. Björner et al. (eds) Configuration spaces, CRM series. (2012) pp. 299–311. Edizioni della Normale, Pisa. doi:10.1007/978-88-7642-431-1_13

GPV2008

Craig Gentry, Chris Peikert, Vinod Vaikuntanathan. How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC 2008. http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

GR2001

Chris Godsil and Gordon Royle, Algebraic Graph Theory. Graduate Texts in Mathematics, Springer, 2001.

Gre2006

R. M. Green, Star reducible Coxeter groups, Glasgow Mathematical Journal, Volume 48, Issue 3, pp. 583-609.

Gri2021

O. Gritsenko, On strongly regular graph with parameters (65; 32; 15; 16), arXiv 2102.05432.

GX2020

R. M. Green, Tianyuan Xu, Classification of Coxeter groups with finitely many elements of a-value 2, Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 331-364.

Gr2006

Matthew Greenberg, “Heegner points and rigid analytic modular forms”, Ph.D. Thesis, McGill University, 2006.

Gr2007

J. Green, Polynomial representations of \(GL_n\), Springer Verlag, 2007.

Graham1985

J. Graham, Modular representations of Hecke algebras and related algebras. PhD thesis, University of Sydney, 1985.

GriRei18

Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv 1409.8356v6.

GR1989

A. M. Garsia, C. Reutenauer. A decomposition of Solomon’s descent algebra. Adv. Math. 77 (1989). http://www.lacim.uqam.ca/~christo/Publi%C3%A9s/1989/Decomposition%20Solomon.pdf

GR2013

Darij Grinberg, Tom Roby. Iterative properties of birational rowmotion. http://www.cip.ifi.lmu.de/~grinberg/algebra/skeletal.pdf

Gri2005

G. Grigorov, Kato’s Euler System and the Main Conjecture, Harvard Ph.D. Thesis (2005).

GroLar1

R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1) (1989), 184-210. Preprint: arXiv 0711.3877v1

Grinb2016a

Darij Grinberg, Double posets and the antipode of QSym, arXiv 1509.08355v3.

Gro1987

M. Gromov. Hyperbolic groups. Essays in Group Theory, 8:75–263, 1987. doi:10.1007/978-1-4613-9586-7_3.

GrS1967

Grunbaum and Sreedharan, “An enumeration of simplicial 4-polytopes with 8 vertices”, J. Comb. Th. 2, 437-465 (1967)

GS1984

A. M. Garsia, Dennis Stanton. Group actions on Stanley-Reisner rings and invariants of permutation groups. Adv. in Math. 51 (1984), 107-201. http://www.sciencedirect.com/science/article/pii/0001870884900057

GS1999

Venkatesan Guruswami and Madhu Sudan, Improved Decoding of Reed-Solomon Codes and Algebraic-Geometric Codes, 1999

GS2010

Daniel Gourion and Alberto Seeger. Critical angles in polyhedral convex cones: numerical and statistical considerations. Mathematical Programming, 123:173-198, 2010. doi:10.1007/s10107-009-0317-2.

Go1993

David M. Goldschmidt. Group characters, symmetric functions, and the Hecke algebras. AMS 1993.

GS1970

J.-M. Goethals and J. J. Seidel, Strongly regular graphs derived from combinatorial designs, Can. J. Math. 22 (1970) 597-614. doi:10.4153/CJM-1970-067-9

GS1975

J.M. Goethals, and J. J. Seidel, The regular two-graph on 276 vertices, Discrete Mathematics 12, no. 2 (1975): 143-158. doi:10.1016/0012-365X(75)90029-1

GSL

GNU Scientific Library. https://www.gnu.org/software/gsl/doc/html/

GT1996

P. Gianni and B. Trager. “Square-free algorithms in positive characteristic”. Applicable Algebra in Engineering, Communication and Computing, 7(1), 1-14 (1996)

GT2001

Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. 2nd edition, John Wiley & Sons, 2001.

GT2014

M.S. Gowda and J. Tao. On the bilinearity rank of a proper cone and Lyapunov-like transformations. Mathematical Programming, 147 (2014) 155-170.

Gu

GUAVA manual, https://www.gap-system.org/Packages/guava.html

Gut2001

Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-Trees, International Symposium on Graph Drawing, (2001) 77-90

GW1999

Frederick M. Goodman and Hans Wenzl. Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polyonmials. Int. Math. Res. Notices 5 (1999), 251-275. arXiv math/9807014v1.

GW2014

G. Gratzer and F. Wehrung, Lattice Theory: Special Topics and Applications Vol. 1, Springer, 2014.

GYLL1993

I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent results in the theory of the Wiener number. Indian Journal of Chemistry, 32A:651–661, 1993.

GZ1983

Greene; Zaslavsky, “On the Interpretation of Whitney Numbers Through Arrangements of Hyperplanes, Zonotopes, Non-Radon Partitions, and Orientations of Graphs”. Transactions of the American Mathematical Society, Vol. 280, No. 1. (Nov., 1983), pp. 97-126.

GZ1986

B. Gross and D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225-320.

H

Ha2005

Gerhard Haring. [Online] Available: http://osdir.com/ml/python.db.pysqlite.user/2005-11/msg00047.html

Hac2016

M. Hachimori. http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/dunce_hat_eng.html

Haf2004

Paul R. Hafner. On the Graphs of Hoffman-Singleton and Higman-Sims. The Electronic Journal of Combinatorics 11 (2004), #R77. http://www.combinatorics.org/Volume_11/PDF/v11i1r77.pdf

Hai1989

M.D. Haiman, On mixed insertion, symmetry, and shifted Young tableaux. Journal of Combinatorial Theory, Series A Volume 50, Number 2 (1989), pp. 196-225.

Hai1992

Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Mathematics 99 (1992), 79-113, http://www.sciencedirect.com/science/article/pii/0012365X9290368P

Haj2000

M. Hajiaghayi, Consecutive Ones Property, 2000. http://www-math.mit.edu/~hajiagha/pp11.ps

Han1960

Haim Hanani, On quadruple systems, pages 145–157, vol. 12, Canadian Journal of Mathematics, 1960 http://cms.math.ca/cjm/v12/cjm1960v12.0145-0157.pdf

Har1962

Frank Harary. The determinant of the adjacency matrix of a graph. SIAM Review 4 (1962), pp. 202-210. doi:10.1137/1004057

Har1969

Frank Harary, Graph Theory, Addison-Wesley, 1969.

Har1977

R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977.

Har1994

Frank Harary. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Harako2020

Shuichi Harako. The second homology group of the commutative case of Kontsevich’s symplectic derivation Lie algebra. Preprint, 2020, arXiv 2006.06064.

HarPri

F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen 13 1966 103-107.

Hat2002

Allen Hatcher, “Algebraic Topology”, Cambridge University Press (2002).

Hayashi1990

T. Hayashi. \(q\)-analogues of Clifford and Weyl algebras - spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys. 127 (1990) pp. 129-144.

HC2006

Mark van Hoeij and John Cremona, Solving Conics over function fields. J. Théor. Nombres Bordeaux, 2006.

He2006

Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297-317, 2006. doi:10.1016/j.disc.2005.12.003

He2002

H. Heys A Tutorial on Linear and Differential Cryptanalysis ; 2002’ available at http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf

Hes2002

Florian Hess, “Computing Riemann-Roch spaces in algebraic function fields and related topics,” J. Symbolic Comput. 33 (2002), no. 4, 425–445.

Hes2002b

Florian Hess, “An algorithm for computing Weierstrass points,” International Algorithmic Number Theory Symposium (pp. 357-371). Springer Berlin Heidelberg, 2002.

HH2012

Victoria Horan and Glenn Hurlbert, Overlap Cycles for Steiner Quadruple Systems, 2012, arXiv 1204.3215

HHL2009

T. Huang, L. Huang, M.I. Lin, On a class of strongly regular designs and quasi-semisymmetric designs. In: Recent Developments in Algebra and Related Areas, ALM vol. 8, pp. 129–153. International Press, Somerville (2009).

Hig2002

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. Society for Industrial and Applied Mathematics, Philadelphia, 2002.

Hig2008

N. J. Higham, “Functions of matrices: theory and computation”, Society for Industrial and Applied Mathematics (2008).

HIK2011

R. Hammack, W. Imrich, S. Klavzar, Handbook of Product Graphs, CRC press, 2011

HJ2004

Tom Hoeholdt and Joern Justesen, A Course In Error-Correcting Codes, EMS, 2004

HK2002a

Holme, P. and Kim, B.J. Growing scale-free networks with tunable clustering, Phys. Rev. E (2002). vol 65, no 2, 026107. doi:10.1103/PhysRevE.65.026107.

HKL2021

Clemens Heuberger, Daniel Krenn, Gabriel F. Lipnik, Asymptotic Analysis of `q`-Recursive Sequences, arXiv 2105.04334, 2021.

HKOTY1999

G. Hatayama, A. Kuniba, M. Okado, T. Tagaki, and Y. Yamada, Remarks on fermionic formula. Contemp. Math., 248 (1999).

HKP2010

T. J. Haines, R. E. Kottwitz, A. Prasad, Iwahori-Hecke Algebras, J. Ramanujan Math. Soc., 25 (2010), 113–145. arXiv 0309168v3 MathSciNet MR2642451

HL1999

L. Heath and N. Loehr (1999). New algorithms for generating Conway polynomials over finite fields. Proceedings of the tenth annual ACM-SIAM symposium on discrete algorithms, pp. 429-437.

HL2008

J. Hong and H. Lee. Young tableaux and crystal \(B(\infty)\) for finite simple Lie algebras. J. Algebra 320, pp. 3680–3693, 2008.

HL2014

Thomas Hamilton and David Loeffler, “Congruence testing for odd modular subgroups”, LMS J. Comput. Math. 17 (2014), no. 1, 206-208, doi:10.1112/S1461157013000338.

Hli2006

Petr Hlineny, “Equivalence-free exhaustive generation of matroid representations”, Discrete Applied Mathematics 154 (2006), pp. 1210-1222.

HLT1993

F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph. Mathematical and computer modelling, vol. 17 n11 pp.89–95, 1993. doi:10.1016/0895-7177(93)90259-2.

HLY2002

Yi Hu, Chien-Hao Liu, and Shing-Tung Yau. Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces. Adv. Theor. Math. Phys., 6(3):457-506, 2002. arXiv math/0010082v2 [math.AG].

HM2011

Florent Hivert and Olivier Mallet. Combinatorics of k-shapes and Genocchi numbers, in FPSAC 2011, Reykjav´k, Iceland DMTCS proc. AO, 2011, 493-504.

HoDaCG17

Toth, Csaba D., Joseph O’Rourke, and Jacob E. Goodman. Handbook of Discrete and Computational Geometry (3rd Edition). Chapman and Hall/CRC, 2017.

Hoc

Winfried Hochstaettler, “About the Tic-Tac-Toe Matroid”, preprint.

HJ18

Thorsten Holm and Peter Jorgensen A p-angulated generalisation of Conway and Coxeter’s theorem on frieze patterns, International Mathematics Research Notices (2018)

Hopcroft1973

J. E. Hopcroft and R. E. Tarjan. Dividing a Graph into Triconnected Components, SIAM J. Comput., 2(3), 135–158

Hopkins2017

Sam Hopkins, RSK via local transformations, http://web.mit.edu/~shopkins/docs/rsk.pdf

HilGra1976

A. P. Hillman, R. M. Grassl, Reverse plane partitions and tableau hook numbers, Journal of Combinatorial Theory, Series A 21 (1976), pp. 216–221. doi:10.1016/0097-3165(76)90065-0

HK2002

Introduction to Quantum Groups and Crystal Bases. Jin Hong and Seok-Jin Kang. 2002. Volume 42. Graduate Studies in Mathematics. American Mathematical Society.

HM1979

M. Habib, and M.C. Maurer On the X-join decomposition for undirected graphs Discrete Applied Mathematics vol 1, issue 3, pages 201-207

HMPV2000

Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science, 234(1-2): 59-84, 2000. doi:10.1016/S0304-3975(97)00241-7.

HN2006

Florent Hivert and Janvier Nzeutchap. Dual Graded Graphs in Combinatorial Hopf Algebras. https://www.lri.fr/~hivert/PAPER/commCombHopfAlg.pdf

HNT2005

Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon. The algebra of binary search trees, arXiv math/0401089v2.

HP2003

W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.

HP2010

Michel Habib and Christophe Paul, A survey of the algorithmic aspects of modular decomposition. Computer Science Review vol 4, number 1, pages 41–59, 2010, http://www.lirmm.fr/~paul/md-survey.pdf, doi:10.1016/j.cosrev.2010.01.001.

HP2016

S. Hopkins, D. Perkinson. “Bigraphical Arrangements”. Transactions of the American Mathematical Society 368 (2016), 709-725. arXiv 1212.4398

HPR2010

Gary Haggard, David J. Pearce and Gordon Royle. Computing Tutte Polynomials. In ACM Transactions on Mathematical Software, Volume 37(3), article 24, 2010. Preprint: http://homepages.ecs.vuw.ac.nz/~djp/files/TOMS10.pdf

HPS2008

J. Hoffstein, J. Pipher, and J.H. Silverman. An Introduction to Mathematical Cryptography. Springer, 2008.

HPS2017

Graham Hawkes, Kirill Paramonov, and Anne Schilling. Crystal analysis of type \(C\) Stanley symmetric functions. Electronic J. Comb. 24(3) (2017) #P3.51. arXiv 1704.00889.

HOLM2016

Tristan Holmes and J. B. Nation, Inflation of finite lattices along all-or-nothing sets. http://www.math.hawaii.edu/~jb/inflation.pdf

Hor1972

E. Horowitz, “Algorithms for Rational Function Arithmetic Operations”, Annual ACM Symposium on Theory of Computing, Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, pp. 108–118, 1972

HR2005

Tom Halverson and Arun Ram. Partition algebras. Euro. J. Combin. 26 (2005) 869–921.

HR2016

Clemens Heuberger and Roswitha Rissner, “Computing \(J\)-Ideals of a Matrix Over a Principal Ideal Domain”, arXiv 1611.10308, 2016.

HRS1993

C. D. Hodgson, I. Rivin and W. D. Smith. A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bulletin of the American Mathematical Society 27.2 (1992): 246-251.

HRS2016

J. Haglund, B. Rhoades, M. Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Preprint, arXiv 1609.07575.

HRT2000

R.B. Howlett, L.J. Rylands, and D.E. Taylor. Matrix generators for exceptional groups of Lie type. J. Symbolic Computation. 11 (2000). http://www.maths.usyd.edu.au/u/bobh/hrt.pdf

HRW2015

J. Haglund, J. B. Remmel, A. T. Wilson. The Delta Conjecture. Preprint, arXiv 1509.07058.

HS1968

Donald G. Higman and Charles C. Sims. A simple group of order 44,352,000. Mathematische Zeitschrift 105(2): 110-113, 1968. doi:10.1007/BF01110435.

HS2010

Rene Henrion and Alberto Seeger. Inradius and Circumradius of Various Convex Cones Arising in Applications. Set-Valued and Variational Analysis, 18(3-4):483-511, 2010. doi:10.1007/s11228-010-0150-z.

HS2018

B. Hutz, M. Stoll. “Smallest representatives of \(SL(2,\ZZ)\)-orbits of binary forms and endomorphisms of P1”, arXiv 1805.08579, 2018.

HSS

Aric Hagberg, Dan Schult and Pieter Swart. NetworkX documentation. [Online] Available: http://networkx.github.io/documentation/latest/reference/index.html

Hsu1996

Tim Hsu, “Identifying congruence subgroups of the modular group”, Proc. AMS 124, no. 5, 1351-1359 (1996)

Hsu1997

Tim Hsu, “Permutation techniques for coset representations of modular subgroups”, in L. Schneps (ed.), Geometric Galois Actions II: Dessins d’Enfants, Mapping Class Groups and Moduli, volume 243 of LMS Lect. Notes, 67-77, Cambridge Univ. Press (1997)

HST2001

Matthew D. Horton, H. M. Stark, and Audrey A. Terras, What are zeta functions of graphs and what are they good for?, in Quantum graphs and their applications, 173-189, Contemp. Math., Vol. 415.

HST2008

F. Hivert, A. Schilling, N. Thiery, Hecke group algebras as quotients of affine Hecke algebras at level 0, Journal of Combinatorial Theory, Series A 116 (2009) 844-863 (arXiv 0804.3781)

HSV2006

Hess, Smart, Vercauteren, “The Eta Pairing Revisited”, IEEE Trans. Information Theory, 52(10): 4595-4602, 2006.

HT1972

Samuel Huang and Dov Tamari. Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law. J. Combinatorial Theory Ser. A. (1972). http://www.sciencedirect.com/science/article/pii/0097316572900039 .

Hub1975

X. L. Hubaut. Strongly regular graphs. Disc. Math. 13(1975), pp 357–381. doi:10.1016/0012-365X(75)90057-6.

HT1996

W. H. Haemers and V. D. Tonchev, Spreads in strongly regular graphs, Designs, Codes and Cryptography 8 (1996) 145-157. doi:10.1023/A:1018037025910.

Hutz2007

B. Hutz. Arithmetic Dynamics on Varieties of dimension greater than one. PhD Thesis, Brown University 2007

Hutz2009

B. Hutz. Good reduction of periodic points, Illinois Journal of Mathematics 53 (Winter 2009), no. 4, 1109-1126.

Hutz2015

B. Hutz. Determination of all rational preperiodic points for morphisms of PN. Mathematics of Computation, 84:291 (2015), 289-308.

Huy2005

D. Huybrechts : Complex Geometry, Springer (Berlin) (2005).

HX2010

W. Haemers and Q. Xiang, Strongly regular graphs with parameters \((4m^4,2m^4+m^2,m^4+m^2,m^4+m^2)\) exist for all \(m>1\), European Journal of Combinatorics, Volume 31, Issue 6, August 2010, Pages 1553-1559, doi:10.1016/j.ejc.2009.07.009

HZ1999

C. Holton, L. Q. Zamboni, Descendants of primitive substitutions, Theory Comput. Syst. 32 (1999) 133-157.

I

IEEEP1363

IEEE P1363 / D13 (Draft Version 13). Standard Specifications for Public Key Cryptography Annex A (Informative). Number-Theoretic Background. Section A.2.4

IJ1960

Igusa, Jun-ichi. Arithmetic variety of moduli for genus two. Ann. of Math. (2) 72 1960 612–649.

II1983

M. Imase and M. Itoh. “A design for directed graphs with minimum diameter”, IEEE Trans. Comput., vol. C-32, pp. 782-784, 1983.

IK2010

Kenji Iohara and Yoshiyuki Koga. Representation Theory of the Virasoro Algebra. Springer, (2010).

IK2003

Yury Ionin and Hadi Kharaghani. New families of strongly regular graphs. Journal of Combinatorial Designs, 11(3):208–217, 2003. doi:10.1002/jcd.10038

IKMP2019A

T. Iwata, M. Khairallah, K. Minematsu, T. Peyrin “Remus v1.0” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Remus-spec.pdf

IKMP2019B

T. Iwata, M. Khairallah, K. Minematsu, T. Peyrin “Romulus v1.0” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Romulus-spec.pdf

IKMPSSS2019

T. Iwata, M. Khairallah, K. Minematsu, T. Peyrin, Y. Sasaki, S. M. Sim, L. Sun “Thank Goodness It’s Friday(TGIF)” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TGIF-spec.pdf

ILS2012

Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Finding strong bridges and strong articulation points in linear time. Theoretical Computer Science, 447, 74–84 (2012). doi:10.1016/j.tcs.2011.11.011

ILZ2018

K. Iohara, G. Lehrer, and R. Zhang. Schur-Weyl duality for certain infinite dimensional \(U_q(\mathfrak{sl}_2)\)-modules. Preprint, arXiv 1811.01325 (2018).

IR1990

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, GTM volume 84, 1990.

IS2005

Alfredo Iusem and Alberto Seeger. On pairs of vectors achieving the maximal angle of a convex cone. Mathematical Programming, 104(2-3):501-523, 2005. doi:10.1007/s10107-005-0626-z.

ISSK2009

M. Izadi, B. Sadeghiyan, S. S. Sadeghian, H. A. Khanooki, MIBS: A new lightweight block cipher; in CANS, (2009), pp. 334-348.

Ive2012

S. Iveson, Tableaux on `k + 1`-cores, reduced words for affine permutations, and `k`-Schur expansions, Operators on \(k\)-tableaux and the \(k\)-Littlewood-Richardson rule for a special case, UC Berkeley: Mathematics, Ph.D. Thesis, https://escholarship.org/uc/item/7pd1v1b5

Iwa1964

N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I, 10 (1964), 215–236 (1964). MathSciNet MR0165016

Iwa1972

K. Iwasawa, Lectures on p-adic L-functions, Princeton University Press, 1972.

J

Ja1971

N. Jacobson. Exceptional Lie Algebras. Marcel Dekker, Inc. New York. 1971. IBSN No. 0-8247-1326-5.

Jet2008

D. Jetchev. Global divisibility of Heegner points and Tamagawa numbers. Compos. Math. 144 (2008), no. 4, 811–826.

Jeong2017

Juyoung Jeong. Spectral sets and functions on Euclidean Jordan algebras. University of Maryland, Baltimore County, Ph.D. thesis, 2017.

JK1981

Gordon James, Adalbert Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley 1981.

JK2002

Zvonimir Jankoa and Hadi Kharaghani. A Block Negacyclic Bush-Type Hadamard Matrix and Two Strongly Regular Graphs. J. Combin. Theory Ser. A 98 (2002), no. 1, 118–126. doi:10.1006/jcta.2001.3231

JK2003

L. K. Jørgensen, M. Klin, M., Switching of edges in strongly regular graphs. I. A family of partial difference sets on 100 vertices, Electronic Journal of Combinatorics 10(1), 2003.

JKT2001

Zvonimir Janko, Hadi Kharaghani, and Vladimir D. Tonchev. The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs. Des. Codes Cryptogr. 24(2):225–232, 2001. doi:10.1023/A:1011212922844

JL2009

Nicolas Jacon and Cedric Lecouvey. Kashiwara and Zelevinsky involutions in affine type A. Pac. J. Math. 243(2):287-311 (2009).

JL2016

M. Jones and L. Lapointe. Pieri rules for Schur functions in superspace. Preprint, arXiv 1608.08577

JMP2009

Michael Joswig, Benjamin Müller, and Andreas Paffenholz, polymake and lattice polytopes, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009, pp. 491–502

JNC2010

David Joyner, Minh Van Nguyen, and Nathann Cohen. Algorithmic Graph Theory. 2010, http://code.google.com/p/graph-theory-algorithms-book/

JNSV2016

Claude-Pierre Jeannerod, Vincent Neiger, Eric Schost, and Gilles Villard. Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts. In Proceedings ISSAC 2016 (pages 295-302). https://doi.org/10.1145/2930889.2930928

Joh1980

D. Johnson, “Spin structures and quadratic forms on surfaces”, J. London Math. Soc (2), 22, 1980, 365-373

Joh1990

D.L. Johnson. Presentations of Groups. Cambridge University Press. (1990).

Jon1987

V. Jones, Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2) 126 (1987), no. 2, 335–388. doi:10.2307/1971403 MathSciNet MR0908150

Jon2005

V. Jones, The Jones Polynomial, 2005. https://math.berkeley.edu/~vfr/jones.pdf

JRJ94

Jourdan, Guy-Vincent; Rampon, Jean-Xavier; Jard, Claude (1994), “Computing on-line the lattice of maximal antichains of posets”, Order 11 (3) p. 197-210, doi:10.1007/BF02115811

Joy2004

D. Joyner, Toric codes over finite fields, Applicable Algebra in Engineering, Communication and Computing, 15, (2004), p. 63-79.

Joy2006

D. Joyner, On quadratic residue codes and hyperelliptic curves, (preprint 2006)

JP2002

J. Justin, G. Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 276 (2002) 281–313.

JPdA15

N. Jacon and L. Poulain d’Andecy. An isomorphism theorem for Yokonuma-Hecke algebras and applications to link invariants. (2015) arXiv 1501.06389v3.

IS2006

Y.J. Ionin, S. Shrikhande, Combinatorics of symmetric designs. Cambridge University Press, 2006.

JS2010

B. Jones, A. Schilling. “Affine structures and a tableau model for \(E_6\) crystals”, J. Algebra. 324 (2010). 2512-2542. doi:10.1016/j.bbr.2011.03.031, arXiv 0909.2442.

JV2000

J. Justin, L. Vuillon, Return words in Sturmian and episturmian words, Theor. Inform. Appl. 34 (2000) 343–356.

K

Ka1990

Victor G. Kac. Infinite-dimensional Lie Algebras. Third edition. Cambridge University Press, Cambridge, 1990.

Kac1997

V. Kac, “Vertex algebras for beginners”. Second Edition. vol 10. university lecture series. AMS, Cambridge, 1997.

Kal1992

B. Kaliski, The MD2 message-digest algorithm; in RFS 1319, (1992).

Ka1993

Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.

Ka2003

M. Kashiwara. Realizations of Crystals. Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math. 325, Amer. Math. Soc., pp. 133–139, 2003.

Kai1980

Thomas Kailath. “Linear Systems”, Prentice-Hall, 1980.

Kai2012

Thomas Kaiser, A short proof of the tree-packing theorem, J. Discrete Math. 312(10): 1689-1691, 2012. doi:10.1016/j.disc.2012.01.020, arXiv 0911.2809.

Kal1980

T. Kaliath, “Linear Systems”, Prentice-Hall, 1980, 383–386.

Kam2007

Joel Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), 66-93.

Kam2010

Joel Kamnitzer, Mirković-Vilonen cycles and polytopes, Ann. Math. (2) 171 (2010), 731-777.

Kan1958

D. M. Kan, A combinatorial definition of homotopy groups, Ann. Math. (2) 67 (1958), 282-312.

Kar1993

Vahid Karimipour. Representations of the coordinate ring of \(GL_q(n)\). (1993). arXiv hep-th/9306058.

Kas1971

T. Kasami: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Information and Control, 18, pp. 369-394, 1971.

Kas1966a

T. Kasami: Weight Distributions of Bose-Chaudhuri-Hocquenghem Codes. Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. 1966 http://hdl.handle.net/2142/74459

Kas1966b

T. Kasami: Weight Distribution Formula for Some Class of Cyclic Codes. Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. 1966

Kas2018

András Kaszanyitzky. The GraftalLace Cellular Automata. Preprint, arXiv 1805.11532.

Kat1991

Nicholas M. Katz, Exponential sums and differential equations, Princeton University Press, Princeton NJ, 1991.

Kat2004

Kayuza Kato, \(p\)-adic Hodge theory and values of zeta functions of modular forms, Cohomologies \(p\)-adiques et applications arithmétiques III, Astérisque vol 295, SMF, Paris, 2004.

Kau1968

W. H. Kautz. “Bounds on directed (d, k) graphs”. Theory of cellular logic networks and machines, AFCRL-68-0668, SRI Project 7258, Final Rep., pp. 20-28, 1968.

Kaw2009

Kawahira, Tomoki. An algorithm to draw external rays of the Mandelbrot set, Nagoya University, 23 Apr. 2009. math.titech.ac.jp/~kawahira/programs/mandel-exray.pdf

Kir2016

M. Kirschmer, Definite quadratic and hermitian forms with small class number, Habilitationsschrift, RWTH Aachen University, 2016. http://www.math.rwth-aachen.de/~Markus.Kirschmer/papers/herm.pdf

KB1983

W. Kühnel and T. F. Banchoff, “The 9-vertex complex projective plane”, Math. Intelligencer 5 (1983), no. 3, 11-22.

KB1995

A. N. Kirillov, A. D. Berenstein, Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz, 1995, Volume 7, Issue 1, pp. 92–152. http://math.uoregon.edu/~arkadiy/bk1.pdf

Ke1991

A. Kerber. Algebraic combinatorics via finite group actions, 2.2 p. 70. BI-Wissenschaftsverlag, Mannheim, 1991.

Ke2008

B. Keller, Cluster algebras, quiver representations and triangulated categories, arXiv 0807.1960.

Ked2001

Kedlaya, K., Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001) no 4, 323-338

KeSm1998

S. Keller and M. Smid, Modes of Operation Validation System (MOVS): Requirements and Procedures NIST Special Publication 800-17, 1998 doi:10.6028/NIST.SP.800-17

KG2016

P. Karpmann and Benjamin Gregoire, The LITTLUN S-box and the FLY block cipher, Lightweight Cryptography Workshop, 2016. https://www.nist.gov/sites/default/files/documents/2016/10/18/karpman-paper-lwc2016.pdf

Kin1992

Nancy G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters 42(6):345-350, 1992. doi:10.1016/0020-0190(92)90234-M.

KK1995

Victor Klee and Peter Kleinschmidt, Convex polytopes and related complexes., in R. L. Graham, M. Grötschel, L Lovász, Handbook of combinatorics, Vol. 1, Chapter 18, 1995

KKMMNN1992

S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki. Affine crystals and vertex models. Int. J. Mod. Phys. A, 7 (suppl. 1A), (1992) pp. 449-484.

KKPSSSYYLLCHH2004

D. Kwon, J. Kim, S. Park, S. H. Sung, Y. Sohn, J. H. Song, Y. Yeom, E-J. Yoon, S. Lee, J. Lee, S. Chee, D. Han, and J. Hong, New block cipher: ARIA; in ICISC, (2004), pp. 432-445.

KKS2007

S.-J. Kang, J.-A. Kim, and D.-U. Shin. Modified Nakajima Monomials and the Crystal \(B(\infty)\). J. Algebra 308, pp. 524–535, 2007.

KL1979

D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979). no. 2, 165–184. doi:10.1007/BF01390031 MathSciNet MR0560412

KL1990

P. Kleidman and M. Liebeck. The subgroup structure of the finite classical groups. Cambridge University Press, 1990.

KL2008

Chris Kurth and Ling Long, “Computations with finite index subgroups of \({\rm PSL}_2(\ZZ)\) using Farey symbols”, Advances in algebra and combinatorics, 225–242, World Sci. Publ., Hackensack, NJ, 2008. Preprint version: arXiv 0710.1835

Kle1995

A. Kleshchev. Branching rules for modular representations of symmetric groups. I. J. Algebra 178 (1995), 493–511.

Kle1996

A. Kleshchev, Branching rules for modular representations of symmetric groups III: Some corollaries and a problem of Mullineux, J. London Math. Soc. 54 (1996) 25–38. MathSciNet MR1395065

Kle2009

A. Kleshchev. Representation theory of symmetric groups and related Hecke algebras. Bull. Amer. Math. Soc. 47 (2010), 419–481. arXiv 0909.4844.

KLLRSY2014

E. B. Kavun, M. M. Lauridsen, G. Leander, C. Rechberger, P. Schwabe, and T. Yalcin, Prost v1; CAESAR Competition, (2014).

KLPR2010

L. R. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw, PRINTcipher: A block cipher for IC-printing; in CHES, (2010), pp. 16-32.

KLRS2016

S.-J. Kang, K.-H. Lee, H. Ryu, and B. Salisbury. A combinatorial description of the affine Gindikin-Karpelevich formula of type \(A_n^{(1)}\). Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics, Proc. Sympos. Pure Math., vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 145–165.

KLS2013

Allen Knutson, Thomas Lam, and David Speyer. Positroid Varieties: Juggling and Geometry Compositio Mathematica, 149 (2013), no. 10. arXiv 1111.3660.

Kly1990

Klyachko, Aleksandr Anatolevich. Equivariant Bundles on Toral Varieties, Math USSR Izv. 35 (1990), 337-375. http://iopscience.iop.org/0025-5726/35/2/A04/pdf/0025-5726_35_2_A04.pdf

KM1994

S.-J. Kang and K. C. Misra. Crystal bases and tensor product decompositions of \(U_q(G_2)\)-modules. J. Algebra 163, pp. 675–691, 1994.

KMAUTOM2000

Masayuki Kanda, Shiho Moriai, Kazumaro Aoki, Hiroki Ueda, Youichi Takashima, Kazuo Ohta, and Tsutomu Matsumoto, E2 - a new 128-bit block cipher; in IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E83-A(1):48–59, 12 2000.

KMM2004

Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek, “Computational Homology”, Springer-Verlag (2004).

KMN2012

On the trace of the antipode and higher indicators. Yevgenia Kashina and Susan Montgomery and Richard Ng. Israel J. Math., v.188, 2012.

KMOY2007

M. Kashiwara, K. C. Misra, M. Okado, D. Yamada. Perfect crystals for \(U_q(D_4^{(3)})\), J. Algebra. 317 (2007).

KMR2012

A. Kleshchev, A. Mathas, and A. Ram, Universal Specht modules for cyclotomic Hecke algebras, Proc. London Math. Soc. (2012) 105 (6): 1245-1289. arXiv 1102.3519v1

KN1963

S. Kobayashi & K. Nomizu : Foundations of Differential Geometry, vol. 1, Interscience Publishers (New York) (1963).

KN1994

M. Kashiwara and T. Nakashima. Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. J. Algebra 165, no. 2, pp. 295–345, 1994.

KNS2011

Atsuo Kuniba and Tomoki Nakanishi and Junji Suzuki, \(T\)-systems and \(Y\)-systems in integrable systems. J. Phys. A, 44 (2011), no. 10.

KnotAtlas

The Knot atlas. http://katlas.org/wiki/Main_Page

Knu1995

Donald E. Knuth, Overlapping Pfaffians, arXiv math/9503234v1.

Knu1998

Donald E. Knuth The Art of Computer Programming. Volume 2

Knu2011

Donald E. Knuth, The Art of Computer Programming. Volume 4A. Combinatorial Algorithms, Part 1.

Knu2005

Lars R. Knudsen, SMASH - A Cryptographic Hash Function; in FSE’05, (2005), pp. 228-242.

KO2000

Yuji Kobayashi and Friedrich Otto, Repetitiveness of languages generated by morphisms. Theoret. Comp. Sci. 240 (2000) 337–378. doi:10.1016/S0304-3975(99)00238-8

Kob1993

Neal Koblitz, Introduction to Elliptic Curves and Modular Forms. Springer GTM 97, 1993.

Koe1999

Wolfram Koepf: Effcient Computation of Chebyshev Polynomials in Computer Algebra Systems: A Practical Guide. John Wiley, Chichester (1999): 79-99.

Koh1996

Kohel, “Endomorphism Rings of Elliptic Curves over Finite Fields”, UC Berkeley PhD thesis 1996.

Koh2000

David Kohel, Hecke Module Structure of Quaternions, in Class Field Theory — Its Centenary and Prospect (Tokyo, 1998), Advanced Studies in Pure Mathematics, 30, 177-196, 2000.

Koh2004

E. Kohler. Recognizing graphs without asteroidal triples. Journal of Discrete Algorithms 2(4):439-452, Dec. 2004, doi:10.1016/j.jda.2004.04.005.

KohECHIDNA

Kohel, David. ECHIDNA: Databases for Elliptic Curves and Higher Dimensional Analogues. Available at http://echidna.maths.usyd.edu.au/~kohel/dbs/

Koh2007

A. Kohnert, Constructing two-weight codes with prescribed groups of automorphisms, Discrete applied mathematics 155, no. 11 (2007): 1451-1457. http://linearcodes.uni-bayreuth.de/twoweight/

Kol1991

V. A. Kolyvagin. On the structure of Shafarevich-Tate groups. Algebraic geometry, 94–121, Lecture Notes in Math., 1479, Springer, Berlin, 1991.

Kos1985

J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Élie Cartan et les mathématiques d’aujourd’hui, Astérisque hors série (1985), p. 257

KP2002

Volker Kaibel and Marc E. Pfetsch, “Computing the Face Lattice of a Polytope from its Vertex-Facet Incidences”, Computational Geometry: Theory and Applications, Volume 23, Issue 3 (November 2002), 281-290. Available at http://portal.acm.org/citation.cfm?id=763203 and free of charge at arXiv math/0106043

KP2002b

James Kuzmanovich; Andrey Pavlichenkov, Finite Groups of Matrices Whose Entries Are Integers, The American Mathematical Monthly, Vol. 109, No. 2. (2002) pp. 173-186

KP2011

Manuel Kauers and Peter Paule. The Concrete Tetrahedron. Springer-Verlag, 2011.

KP2020

Lars Kastner and Marta Panizzut, Hyperplane arrangements in polymake, arxiv:\(2003.13548\).

KPRWZ2010

M. H. Klin, C. Pech, S. Reichard, A. Woldar, M. Zvi-Av, Examples of computer experimentation in algebraic combinatorics, ARS MATHEMATICA CONTEMPORANEA 3 (2010) 237–258. doi:10.26493/1855-3974.119.60b. http://amc-journal.eu/index.php/amc/article/viewFile/119/118

Kra1999

C. Krattenthaler, Another Involution Principle-Free Bijective Proof of Stanley’s Hook Content Formula, Journal of Combinatorial Theory, Series A, 88 (1999), 66-92, http://www.sciencedirect.com/science/article/pii/0012365X9290368P

Kra1999det

C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 (1999), Art. B42q, 67pp.

Kra2006

Christian Krattenthaler. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. Advances in Applied Mathematics Volume 37, Number 3 (2006), pp. 404-431.

Kr1971

D. Kraines, “On excess in the Milnor basis,” Bull. London Math. Soc. 3 (1971), 363-365.

Kr2016

Stefan Kranich, An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves, arXiv 1505.03432

KR2001

J. Kahane and A. Ryba. The hexad game, Electronic Journal of Combinatorics, 8 (2001). http://www.combinatorics.org/Volume_8/Abstracts/v8i2r11.html

KR2001b

P.L. Krapivsky and S. Redner. “Organization of Growing Random Networks”, Phys. Rev. E vol. 63 (2001), p. 066123.

KR2005

P.L. Krapivsky and S. Redner. “Network Growth by Copying”, Phys. Rev. E vol. 71 (2005), p. 036118.

Kra1989

Kraus, Alain, Quelques remarques à propos des invariants (c_4), (c_6) et (Delta) d’une courbe elliptique, Acta Arith. 54 (1989), 75-80.

Kre2002

V. Kreps. Social Network Analysis (2002). [Online] Available: http://www.orgnet.com/sna.html

KRG1996

S. Klavzar, A. Rajapakse, and I. Gutman. The Szeged and the Wiener index of graphs. Applied Mathematics Letters, 9(5):45–49, 1996. doi:10.1016/0893-9659(96)00071-7.

KS

Sheldon Katz and Stein Arild Stromme, “Schubert”, A Maple package for intersection theory and enumerative geometry.

KS1998

Maximilian Kreuzer and Harald Skarke, Classification of Reflexive Polyhedra in Three Dimensions, arXiv hep-th/9805190

KS2002

A. Khare and U. Sukhatme. “Cyclic Identities Involving Jacobi Elliptic Functions”, preprint 2002. arXiv math-ph/0201004

KS2006

Atsuo Kuniba and Reiho Sakamoto, The Bethe ansatz in a periodic box-ball system and the ultradiscrete Riemann theta function, J. Stat. Mech., P09005 (2006).

KS2010

J.-A. Kim and D.-U. Shin. Generalized Young walls and crystal bases for quantum affine algebra of type \(A\). Proc. Amer. Math. Soc. 138 (2010), no. 11, 3877–3889.

KS2015

Karel Klouda and Štěpán Starosta, An Algorithm Enumerating All Infinite Repetitions in a D0L System. Journal of Discrete Algorithms, 33 (2015), 130-138. doi:10.1016/j.jda.2015.03.006

KS2019

J. Kliem and C. Stump. A face iterator for polyhedra and more general finite locally branched lattices. Preprint (2019): arXiv 1905.01945.

KSV2011

Ian Kiming, Matthias Schuett and Helena Verrill, “Lifts of projective congruence groups”, J. London Math. Soc. (2011) 83 (1): 96-120, doi:10.1112/jlms/jdq062, arXiv 0905.4798.

KT1986

N. Kerzman and M. R. Trummer. “Numerical Conformal Mapping via the Szego kernel”. Journal of Computational and Applied Mathematics, 14(1-2): 111–123, 1986.

KT2013

K. Tsukazaki, Explicit Isogenies of Elliptic Curves, PhD thesis, University of Warwick, 2013.

KTT2006

A. Kuniba, T. Takagi, and A. Takenouchi, Bethe ansatz and inverse scattering transform in a periodic box-ball system, Nuclear Phys. B 747, no. 3 (2006), 354–397.

Kuh1987

W. Kühnel, “Minimal triangulations of Kummer varieties”, Abh. Math. Sem. Univ. Hamburg 57 (1987), 7-20.

Kuh1995

Kuhnel, “Tight Polyhedral Submanifolds and Tight Triangulations” Lecture Notes in Mathematics Volume 1612, 1995

Kul1991

Ravi Kulkarni, “An arithmetic geometric method in the study of the subgroups of the modular group”, American Journal of Mathematics 113 (1991), no 6, 1053-1133

Kur2008

Chris Kurth, “K Farey package for Sage”, http://wayback.archive-it.org/855/20100510123900/http://www.public.iastate.edu/~kurthc/research/index.html

KV2003

Kim, Jeong Han and Vu, Van H. Generating random regular graphs. Proc. 35th ACM Symp. on Thy. of Comp. 2003, pp 213-222. ACM Press, San Diego, CA, USA. doi:10.1145/780542.780576.

Kwon2012

Jae-Hoon Kwon. Crystal bases of \(q\)-deformed Kac Modules over the Quantum Superalgebra \(U_q(\mathfrak{gl}(m|n))\). International Mathematics Research Notices. Vol. 2014, No. 2, pp. 512-550 (2012)

Kwon2014

Jae-Hoon Kwon. \(q\)-deformed Clifford algebra and level zero fundamental representations of quantum affine algebras. J. Algebra, 399 (2014), pp. 927–947. doi:10.1016/j.jalgebra.2013.10.026.

KX1998

S. König and C. Xi. On the structure of cellular algebras. Algebras and modules, II (Geiranger, 1996), 365–386, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998. MathSciNet MR1648638

KY2019

Jang Soo Kim, Meesue Yoo. Hook length property of d-complete posets via q-integrals. J. Combin. Theory Ser. A, 162 (2019), pp. 167-221.

KZ2003

M. Kontsevich, A. Zorich “Connected components of the moduli space of Abelian differentials with prescripebd singularities” Invent. math. 153, 631-678 (2003)

L

Lab2008

S. Labbé, Propriétés combinatoires des \(f\)-palindromes, Mémoire de maîtrise en Mathématiques, Montréal, UQAM, 2008, 109 pages.

Labelle2008

G. Labelle. New combinatorial computational methods arising from pseudo-singletons. DMTCS Proceedings 1, 2008.

Lak2010

Dan Laksov. Splitting algebras and Gysin homomorphisms. Journal of Commutative Algebra, Volume 2, Number 3, Fall 2010

Lam1996

T. K. Lam. B and D analogues of stable Schubert polynomials and related insertion algorithms. PhD Thesis, MIT, 1996.

Lam2004

Thomas Lam, Growth diagrams, domino insertion and sign-imbalance. Journal of Combinatorial Theory, Series A Volume 107, Number 1 (2004), pp. 87-115.

Lam2005

T. Lam, Affine Stanley symmetric functions, Amer. J. Math. 128 (2006), no. 6, 1553–1586.

Lam2008

T. Lam. Schubert polynomials for the affine Grassmannian. J. Amer. Math. Soc., 2008.

Lan2002

S. Lang : Algebra, 3rd ed., Springer (New York) (2002); doi:10.1007/978-1-4613-0041-0

Lan2008

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Annales sci. de l’ENS, serie 4, fascicule 1, 41, 1-56 (2008)

Lasc

A. Lascoux. Chern and Yang through ice. Preprint.

Lau2011

Alan G.B. Lauder, Computations with classical and p-adic modular forms, LMS J. of Comput. Math. 14 (2011), 214-231.

Laz1992

Daniel Lazard, Solving Zero-dimensional Algebraic Systems, in Journal of Symbolic Computation (1992) vol. 13, pp. 117-131

Laz2004

Robert Lazarsfeld: Positivity in algebraic geometry II; Positivity for Vector Bundles, and Multiplier Ideals, Modern Surveys in Mathematics volume 49 (2004).

LB1962

C. G. Lekkerkerker, J. Ch. Boland. Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae, 51:45-64, 1962; doi:10.4064/fm-51-1-45-64.

LBO2014

Kwankyu Lee, Maria Bras-Amorós, and Michael E. O’Sullivan, Unique decoding of general AG codes, IEEE Transactions on Information Theory, vol 60, no. 4 (2014), pp. 2038–2053.

LB1988

Lee, P.J., Brickell, E.F. An observation on the security of McEliece’s public-key cryptosystem. EuroCrypt 1988. LNCS, vol. 330, pp. 275–280.

LdB1982

A. Liberato de Brito, ‘FORTRAN program for the integral of three spherical harmonics’, Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)

Lee2016

Kwankyu Lee, Decoding of differential AG codes, Advances in Mathematics of Communications, vol. 10, no. 2 (2016), pp. 307-–319.

Lee1996

Marc van Leeuwen. The Robinson-Schensted and Sch"utzenberger algorithms, an elementary approach. Electronic Journal of Combinatorics 3, no. 2 (1996): Research Paper 15, approx. 32 pp. (electronic)

Lee1997

J. M. Lee, Riemannian Manifolds, Springer (New York) (1997); doi:10.1007/b98852

Lee2011

J. M. Lee, Introduction to Topological Manifolds, 2nd ed., Springer (New York) (2011); doi:10.1007/978-1-4419-7940-7

Lee2013

J. M. Lee, Introduction to Smooth Manifolds, 2nd ed., Springer (New York) (2013); doi:10.1007/978-1-4419-9982-5

Lei2013

Tom Leinster, The magnitude of metric spaces. Doc. Math. 18 (2013), 857-905.

Lev2014

Lionel Levine. Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle, Communications in Mathematical Physics.

Lew2000

Robert Edward Lewand. Cryptological Mathematics. The Mathematical Association of America, 2000.

LS1998

Pierre Liardet, Pierre Stambul Algebraic Computation with Continued Fractions. J. Number Th. 73, 92-121, 1998.

Li1995

Peter Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1995), no. 1, 65–87.

Li1995b

P. Littelmann, Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499-525.

Li2005

H. Li, Abelianizing vertex algebras. Comm. Math. Phys. vol. 259, no. 2, pp. 391–411 (2005)

Lic1977

A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, Journal of Differential Geometry 12, 253 (1977); doi:10.4310/jdg/1214433987

Lic1997

William B. Raymond Lickorish. An Introduction to Knot Theory, volume 175 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. ISBN 0-387-98254-X

Lim

C. H. Lim, CRYPTON: A New 128-bit Block Cipher; available at http://next.sejong.ac.kr/~chlim/pub/cryptonv05.ps

Lim2001

C. H. Lim, A Revised Version of CRYPTON: CRYPTON V1.0; in FSE’01, pp. 31–45.

Lin1999

J. van Lint, Introduction to coding theory, 3rd ed., Springer-Verlag GTM, 86, 1999.

Liv1993

Charles Livingston, Knot Theory, Carus Mathematical Monographs, number 24.

Liv2006

M. Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), no 1, pages 1-18. Preprint: arXiv math/0504296v2.

LLM2003

A. Lascoux, L. Lapointe, and J. Morse. Tableau atoms and a new Macdonald positivity conjecture. Duke Math Journal, 116 (1), 2003. arXiv math/0008073

LLM2014

Lee, Li, Mills, A combinatorial formula for certain elements in the upper cluster algebra, arXiv 1409.8177

LLMS2006

T. Lam, L. Lapointe, J. Morse, M. Shimozono, Affine insertion and Pieri rules for the affine Grassmannian, Memoirs of the AMS, 208 (2010), no. 977, arXiv math.CO/0609110

LLMS2013

Thomas Lam, Luc Lapointe, Jennifer Morse, and Mark Shimozono (2013). The poset of k-shapes and branching rules for k-Schur functions <http://breakfreerun.org/index.php/ebooks/the-poset-of-k-shapes-and-branching-rules-for-k-schur-functions>`_. Memoirs of the American Mathematical Society, 223(1050), 1-113. DOI: 10.1090/S0065-9266-2012-00655-1

LLMSSZ2013

Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono and Mike Zabrocki. k-Schur functions and affine Schubert calculus, 2013. arXiv 1301.3569.

LLT1996

Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Comm. Math. Phys. 181 (1996), pp 205-263. MathSciNet MR1410572

LLT

A. Lascoux, B. Leclerc, and J.Y. Thibon. The Plactic Monoid. Survey article available at [http://www-igm.univ-mlv.fr/~jyt/ARTICLES/plactic.ps]

LLWC2011

Chien-Hung Lin, Jia-Jie Liu, Yue-Li Wang, William Chung-Kung Yen, The Hub Number of Sierpinski-Like Graphs, Theory Comput Syst (2011), vol 49, doi:10.1007/s00224-010-9286-3

LLYCL2005

H. J. Lee, S. J. Lee, J. H. Yoon, D. H. Cheon, and J. I. Lee, The SEED Encryption Algorithm; in RFC 4269, (2005).

LLZ2014

K. Lee, L. Li, and A. Zelevinsky, Greedy elements in rank 2 cluster algebras, Selecta Math. 20 (2014), 57-82.

LM2004

Lapointe, L. and Morse, J. ‘Order Ideals in Weak Subposets of Young’s Lattice and Associated Unimodality Conjectures’. Ann. Combin. (2004)

LM2006

Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. ICALP, pp. 144–155, Springer, 2006.

LM2006b

L. Lapointe, J. Morse. Tableaux on \(k+1\)-cores, reduced words for affine permutations, and \(k\)-Schur expansions. J. Combin. Theory Ser. A 112 (2005), no. 1, 44–81. MR2167475 (2006j:05214)

LM2011

A. Lauve, M. Mastnak. The primitives and antipode in the Hopf algebra of symmetric functions in noncommuting variables. Advances in Applied Mathematics. 47 (2011). 536-544. arXiv 1006.0367v3 doi:10.1016/j.aam.2011.01.002.

LM2018

A. Lauve, M. Mastnak. Bialgebra coverings and transfer of structure. Preprint, arXiv 1803.02691.

LMR2010

N. Linial, R. Meshulam and M. Rosenthal, “Sum complexes – a new family of hypertrees”, Discrete & Computational Geometry, 2010, Volume 44, Number 3, Pages 622-636

LNSSS2013

C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for Kirillov-Reshetikhin crystals. Extended abstract. DMTCS proc, to appear ( arXiv 1211.6019 )

Lod1995

Jean-Louis Loday. Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand., pp. 189–196 (1995). http://www.math.uiuc.edu/K-theory/0015/cup_product.pdf

Loe2007

David Loeffler, Spectral expansions of overconvergent modular functions, Int. Math. Res. Not 2007 (050). arXiv math/0701168.

LOS2012

C. Lecouvey, M. Okado, M. Shimozono. “Affine crystals, one-dimensional sums and parabolic Lusztig \(q\)-analogues”. Mathematische Zeitschrift. 271 (2012). Issue 3-4. 819-865. doi:10.1007/s00209-011-0892-9, arXiv 1002.3715.

Lot1983

M. Lothaire, Combinatorics on Words, vol. 17 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Massachusetts (1983)

Lot1997

M. Lothaire, Combinatorics on Words, Cambridge University Press, (1997).

Lot2002

M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).

Lot2005

M. Lothaire, Applied combinatorics on words. Cambridge University Press (2005).

Lov1979

László Lovász, On the Shannon capacity of a graph, IEEE Trans. Inf. Th. 25(1979), 1-7. doi:10.1109/TIT.1979.1055985.

LP2007

G. Leander and A. Poschmann, On the Classification of 4 Bit S-boxes; in WAIFI, (2007), pp. 159-176.

LP2008

C. Lenart and A. Postnikov. A combinatorial model for crystals of Kac-Moody algebras. Trans. Amer. Math. Soc. 360 (2008), 4349-4381.

LP2011

Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. in Proceeding of the 11th international conference on Topics in cryptology: CT-RSA 2011. Springer 2011, doi:10.1007/978-3-642-19074-2_21

LPR2010

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings. in Advances in Cryptology – EUROCRYPT 2010. Springer 2010. doi:10.1007/978-3-642-13190-5_1

LR1997

Robert Leduc and Arun Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125 (1997), no. 1, 1–94.

LR1998

Jean-Louis Loday and Maria O. Ronco. Hopf algebra of the planar binary trees, Advances in Mathematics, volume 139, issue 2, 10 November 1998, pp. 293-309. http://www.sciencedirect.com/science/article/pii/S0001870898917595

LR0102066

Jean-Louis Loday and Maria O. Ronco. Order structure on the algebra of permutations and of planar binary trees. arXiv math/0102066v1.

LRS2017

Julien Leroy, Michel Rigo, Manon Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Math. 340 (2017), no. 5, 862–881.

LS

A. Lum, W. Stein. Verification of the Birch and Swinnerton-Dyer Conjecture for Elliptic Curves with Complex Multiplication (unpublished)

LS1981

J. H. van Lint, and A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica, 1(1), 1981, 63-73. doi:10.1007/BF02579178.

LS1990

A. Lascoux, M.-P. Schutzenberger. Keys and standard bases, invariant theory and tableaux. IMA Volumes in Math and its Applications (D. Stanton, ED.). Southend on Sea, UK, 19 (1990). 125-144.

LS1994

Eike Lau and Dierk Schleicher. Internal addresses in the Mandelbrot set and irreducibility of polynomials. Stony Brook Preprint #19 (1994). https://www.math.stonybrook.edu/theses/thesis94-2/part1.pdf

LS2007

Thomas Lam and Mark Shimozono. Dual graded graphs for Kac-Moody algebras. Algebra & Number Theory 1.4 (2007) pp. 451-488.

LSS2009

T. Lam, A. Schilling, M. Shimozono. Schubert polynomials for the affine Grassmannian of the symplectic group. Mathematische Zeitschrift 264(4) (2010) 765-811 (arXiv 0710.2720)

LS2012

K.-H. Lee and B. Salisbury. Young tableaux, canonical bases, and the Gindikin-Karpelevich formula. arXiv 1205.6006.

LS2017

Xuan Liu and Travis Scrimshaw. A uniform approach to soliton cellular automata using rigged configurations. Preprint (2017) arXiv 1706.02443

LSW2012

Svante Linusson, John Shareshian and Michelle L. Wachs, Rees products and lexicographic shellability, J. Comb. 3 (2012), no. 3, 243-276.

LT1998

B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, http://front.math.ucdavis.edu/9809.5122

LT2009

G. I. Lehrer and D. E. Taylor. Unitary reflection groups. Australian Mathematical Society Lecture Series, 2009.

LT2012

Dan Laksov, Anders Thorup. Splitting algebras and Schubert calculus, Indiana Univ. Math. J. 61 (2012), 1253-1312 doi:10.1512/iumj.2012.61.4791

DeLuca2006

A. De Luca, Pseudopalindrome closure operators in free monoids, Theoret. Comput. Sci. 362 (2006) 282–300.

LT2018

Zhiqiang Li, Shaobin Tan. Verma modules for rank two Heisenberg-Virasoro algebra. Preprint, (2018). arXiv 1807.07735.

Lut2002

Frank H. Lutz, Császár’s Torus, Electronic Geometry Model No. 2001.02.069 (2002). http://www.eg-models.de/models/Classical_Models/2001.02.069/_direct_link.html

Lus1985

George Lusztig, Cells in affine Weyl groups, Algebraic Groups and Related Topics, Advanced Studies in Pure mathematics 6, 1985, pp. 255-287.

Lus2013

George Lusztig, Hecke algebras with unequal parameters, arXiv math/0208154.

Lut2005

Frank H. Lutz, “Triangulated Manifolds with Few Vertices: Combinatorial Manifolds”, preprint (2005), arXiv math/0506372

LV2012

Jean-Louis Loday and Bruno Vallette. Algebraic Operads. Springer-Verlag Berlin Heidelberg (2012). doi:10.1007/978-3-642-30362-3.

Ltd06

Beijing Data Security Technology Co. Ltd, Specification of SMS4, Block Cipher for WLAN Products - SMS4 (in Chinese); Available at http://www.oscca.gov.cn/UpFile/200621016423197990.pdf, (2006).

LTV1999

Bernard Leclerc, Jean-Yves Thibon, and Eric Vasserot. Zelevinsky’s involution at roots of unity. J. Reine Angew. Math. 513:33-51 (1999).

LW2012

David Loeffler and Jared Weinstein, On the computation of local components of a newform, Mathematics of Computation 81 (2012) 1179-1200. doi:10.1090/S0025-5718-2011-02530-5

LW2015

T. Lawson and C. Wuthrich, Vanishing of some Galois cohomology groups for elliptic curves, arXiv 1505.02940

LY2001

K. Lauter and T. Yang, “Computing genus 2 curves from invariants on the Hilbert moduli space”, Journal of Number Theory 131 (2011), pages 936 - 958

Lyo2003

R. Lyons, Determinantal probability measures. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 98(1) (2003), pp. 167-212.

LZ2004

S. Lando and A. Zvonkine, “Graphs on surfaces and their applications”, Springer-Verlag, 2004.

LZ2011

Bin Li and Hechun Zhang. Path realization of crystal \(B(\infty)\). Front. Math. China, 6 (4), (2011) pp. 689–706. doi:10.1007/s11464-010-0073-x

M

Mac1916

F.S. Macaulay. The algebraic theory of modular systems Cambridge university press, 1916.

Mac1995

I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., The Clarendon Press, Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.

MagmaHGM

Hypergeometric motives in Magma, http://magma.maths.usyd.edu.au/~watkins/papers/HGM-chapter.pdf

Mar1980

Jacques Martinet, Petits discriminants des corps de nombres, Journ. Arithm. 1980, Cambridge Univ. Press, 1982, 151–193.

Mar2004

S. Marcus, Quasiperiodic infinite words, Bull. Eur. Assoc. Theor. Comput. Sci. 82 (2004) 170-174.

Mas1994

James L. Massey, SAFER K-64: A byte-oriented block-ciphering algorithm; in FSE’93, Volume 809 of LNCS, pages 1-17. Springer, Heidelberg, December 1994.

Mat1992

O. Mathieu. Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math. 107(2) (1992), pp. 225-234.

Mat1999

A. Mathas. Iwahori-Hecke algebras and Schur algebras of the symmetric group. University Lecture Series, 15. American Mathematical Society, Providence, RI, 1999. xiv+188 pp. ISBN: 0-8218-1926-7 MathSciNet MR1711316

Mat2002

Jiří Matousek, “Lectures on Discrete Geometry”, Springer, 2002

Ma2009

Sarah Mason, An Explicit Construction of Type A Demazure Atoms, Journal of Algebraic Combinatorics, Vol. 29, (2009), No. 3, p.295-313. arXiv 0707.4267

Mac1936I

Saunders MacLane, A construction for prime ideals as absolute values of an algebraic field. Duke Mathematical Journal, 2(3) (1936), 492-510.

Mac1936II

Saunders MacLane, A construction for absolute values in polynomial rings. Transactions of the American Mathematical Society, 40(3)(1936), 363-395.

Mac1915

Percy A. MacMahon, Combinatory Analysis, Cambridge University Press (1915–1916). (Reprinted: Chelsea, New York, 1960).

Man2019

V. Manero and M. Marco, Effective computation of degree bounded minimal models of GCDA’s, arXiv 1909.07761

MAR2009

H. Molina-Abril and P. Réal, Homology computation using spanning trees in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, volume 5856, pp 272-278, Springer, Berlin (2009).

Mar1997

C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, Journal of Geometry and Physics 23, 350 (1997); doi:10.1016/S0393-0440(97)80009-5

Mark1992

George Markowsky, Primes, irreducibles and extremal lattices, Order 9 (1992), no. 3, 265-290. doi:10.1007%2FBF00383950

Mar1994

George Markowsky. Permutation lattices revisited. Mathematical Social Sciences, 27 (1994), 59–72.

Mar2009a

Matilde Marcolli, Feynman Motives, Chapter 3, Feynman integrals and algebraic varieties, http://www.its.caltech.edu/~matilde/LectureN3.pdf

Mas1969

James L. Massey, “Shift-Register Synthesis and BCH Decoding.” IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969.

Mat1978

R. A. Mathon, Symmetric conference matrices of order `pq^2 + 1`, Canad. J. Math. 30 (1978) 321-331, doi:10.4153/CJM-1978-029-1.

Mat2015

A. Mathas. Cyclotomic quiver Hecke algebras of type A, in “Modular representation theory of finite and p-adic groups”, 165–266, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 30, World Sci. Publ., Hackensack, NJ, 2015. MathSciNet MR3495747

MatroidDatabase

Database of Matroids

May1964

J. P. May, “The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra.” Thesis, Princeton Univ., 1964.

May1967

J. P. May, Simplicial Objects in Algebraic Topology, University of Chicago Press (1967)

Maz1978

B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 33–186 (1978).

Maz1978b

B. Mazur. Rational Isogenies of Prime Degree. Inventiones mathematicae 44, 129-162 (1978).

MBRe2011

Patricia Muldoon Brown and Margaret A. Readdy, The Rees product of posets, J. Comb. 2 (2011), no. 2, 165-191

McC1978

K. McCrimmon. Jordan algebras and their applications. Bull. Amer. Math. Soc. 84 1978.

McE1987

Robert J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer Academic Publishers, 1987.

McK1998

Brendan D. McKay, “Isomorph-Free Exhaustive generation”. Journal of Algorithms, 26(2): 306-324, February 1998.

McK2015

McKay, Brendan. Description of graph6 and sparse6 encodings., updated Jun 2015. http://cs.anu.edu.au/~bdm/data/formats.txt (2019-08-25)

McM1992

John McMillan. Games, strategies, and managers. Oxford University Press.

Me1997

G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42.

MeNoTh11

Frédéric Menous, Jean-Christophe Novelli, Jean-Yves Thibon, Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras, Advances in Applied Mathematics, Volume 51, Issue 2, July 2013, Pages 177–227, doi:10.1016/j.aam.2013.02.003, arXiv 1109.1634v2.

MF1999

J.H. Mathews and K.D. Fink. Numerical Methods Using MATLAB. 3rd edition, Prentice-Hall, 1999.

Mes1991

Mestre, Jean-François. Construction de courbes de genre 2 à partir de leurs modules. Effective methods in algebraic geometry (Castiglioncello, 1990), 313–334, Progr. Math., 94, Birkhauser Boston, Boston, MA, 1991.

Mil1958

J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171.

Mil1974

J. W. Milnor and J. D. Stasheff, Characteristic Classes, University Press, Princeton and Tokyo, 1974.

Mil1978

S. Milne, A q-analog of restricted growth functions, Dobinsky’s equality and Charlier polynomials. Trans. Amer. Math. Soc., 245 (1978), 89-118.

Mil2004

Victor S. Miller, “The Weil pairing, and its efficient calculation”, J. Cryptol., 17(4):235-261, 2004

Mil2017

Arthur Milchior, (Quasi-)linear time algorithm to compute LexDFS, LexUP and LexDown orderings. (2017) arXiv 1701.00305

MirMor2009

R. Miranda, D.R. Morrison, “Embeddings of Integral Quadratic Forms” http://www.math.ucsb.edu/~drm/manuscripts/eiqf.pdf .

MKO1998

Hans Munthe–Kaas and Brynjulf Owren. Computations in a free Lie algebra. (1998). Downloadable from Munthe-Kaas’s website

MLH2008

C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight bounds for the diameter of massive graphs. ACM Journal of Experimental Algorithms 13 (2008). doi:10.1145/1412228.1455266.

MMIB2012

Y. Matsumoto, S. Moriyama, H. Imai, D. Bremner: Matroid Enumeration for Incidence Geometry, Discrete and Computational Geometry, vol. 47, issue 1, pp. 17-43, 2012.

MMY2003

Jean-Christophe Yoccoz, Stefano Marmi and Pierre Moussa “On the cohomological equation for interval exchange maps”, C. R. Acad. Sci. Paris, projet de Note, 2003 Systèmes dynamiques/Dynamical Systems. arXiv math/0304469v1

MM1998

Gunter Malle and Andrew Mathas. Symmetric cyclotomic Hecke algebras J. Algebra. 205 (1998) pp. 275-293.

MM2015

J. Matherne and G. Muller, Computing upper cluster algebras, Int. Math. Res. Not. IMRN, 2015, 3121-3149.

Moh1988

B. Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra and its Applications 103 (1988), 119–131.

MNO1994

Alexander Molev, Maxim Nazarov, and Grigori Olshanski. Yangians and classical Lie algebras. (1994) arXiv hep-th/9409025

Mol2007

Alexander Ivanovich Molev. Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society. (2007)

Mol2015

A. Molnar, Fractional Linear Minimal Models of Rational Functions, M.Sc. Thesis.

Mon1998

K. G. Monks, “Change of basis, monomial relations, and \(P^s_t\) bases for the Steenrod algebra,” J. Pure Appl. Algebra 125 (1998), no. 1-3, 235-260.

Mon2010

T. Monteil, The asymptotic language of smooth curves, talk at LaCIM2010.

Mo2009

D. Moody, Des. Codes Cryptogr. (2009) 52: 381. doi:10.1007/s10623-009-9287-x

MoPa1994

P. Morton and P. Patel. The Galois theory of periodic points of polynomial maps. Proc. London Math. Soc., 68 (1994), 225-263.

MP2019

M. Montes, D. Penazzi “Yarara and Coral v1” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/yarara_and_coral-spec.pdf

MPP2008

Conrado Martinez, Alois Panholzer and Helmut Prodinger, Generating random derangements doi:10.1137/1.9781611972986.7 http://www.siam.org/proceedings/analco/2008/anl08_022martinezc.pdf

MPPS2020

Jennifer Morse, Jianping Pan, Wencin Poh, Anne Schilling. A Crystal on Decreasing Factorizations in the 0-Hecke Monoid Electron. J. Combin., 27(2) (2020) #P2.29. arXiv 1911.08732.

MR1985

R. Mathon and A. Rosa, A new strongly regular graph, Journal of Combinatorial Theory, Series A 38, no. 1 (1985): 84-86. doi:10.1016/0097-3165(85)90025-1

MR1989

G. Melançon and C. Reutenauer. Lyndon words, free algebras and shuffles, Can. J. Math., Vol. XLI, No. 4, 1989, pp. 577-591.

MR1995

C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, Journal of Algebra 177 (1995), no. 3, 967-982. http://www.lacim.uqam.ca/~christo/Publi%C3%A9s/1995/Duality.pdf

MR2002

S. Murphy, M. Robshaw Essential Algebraic Structure Within the AES; in Advances in Cryptology - CRYPTO 2002; LNCS 2442; Springer Verlag 2002

MRR1983

W. H. Mills, David P Robbins, Howard Rumsey Jr., Alternating sign matrices and descending plane partitions, Journal of Combinatorial Theory, Series A, Volume 34, Issue 3, May 1983, Pages 340–359. http://www.sciencedirect.com/science/article/pii/0097316583900687

MR2016

B. Malmskog, C. Rasmussen, Picard curves over Q with good reduction away from 3. LMS Journal of Computation and Mathematics 19 (2016), no. 2, 382-408. doi:10.1112/S1461157016000413.

MS1977

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977

MS1994

P. Martin and H. Saleur. The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys., 30 (1994), no. 3. pp. 189-206.

MS2003

T. Mulders, A. Storjohann, “On lattice reduction for polynomial matrices”, J. Symbolic Comput. 35 (2003), no. 4, 377–401

MS2011

G. Musiker and C. Stump, A compendium on the cluster algebra and quiver package in sage, arXiv 1102.4844.

MS2015

Jennifer Morse and Anne Schilling. Crystal approach to affine Schubert calculus. Int. Math. Res. Not. (2015). doi:10.1093/imrn/rnv194, arXiv 1408.0320.

MSSY2001

Mateescu, A., Salomaa, A., Salomaa, K. and Yu, S., A sharpening of the Parikh mapping. Theoret. Informatics Appl. 35 (2001) 551-564.

MSZ2013

Michael Maschler, Solan Eilon, and Zamir Shmuel. Game Theory. Cambridge: Cambridge University Press, (2013). ISBN 9781107005488.

MT1991

Mazur, B., & Tate, J. (1991). The \(p\)-adic sigma function. Duke Mathematical Journal, 62(3), 663-688.

MTT1986

B. Mazur, J. Tate, and J. Teitelbaum, On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inventiones mathematicae 84, (1986), 1-48.

Mu1997

Murty, M. Ram. Congruences between modular forms. In “Analytic Number Theory” (ed. Y. Motohashi), London Math. Soc. Lecture Notes 247 (1997), 313-320, Cambridge Univ. Press.

Mul2004

Siguna Muller, “On the Computation of Square Roots in Finite Fields”, in Designs, Codes and Cryptography, Volume 31, Issue 3 (March 2004)

Mur1983

G. E. Murphy. The idempotents of the symmetric group and Nakayama’s conjecture. J. Algebra 81 (1983). 258-265.

Muth2019

Robert Muth. Super RSK correspondence with symmetry. Electron. J. Combin. 26 (2019), no. 2, Paper 2.27, 29 pp. https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i2p27, arXiv 1711.00420.

Muz2007

M. Muzychuk. A generalization of Wallis-Fon-Der-Flaass construction of strongly regular graphs. J. Algebraic Combin., 25(2):169–187, 2007. doi:10.1007/s10801-006-0030-7.

MV2010

D. Micciancio, P. Voulgaris. A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations. Proceedings of the 42nd ACM Symposium Theory of Computation, 2010.

MvOV1996

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

MW1990

Brendan D. McKay and Nicholas C. Worland. “Uniform Generation of Random Regular Graphs of Moderate Degree”. Journal of Algorithms, 11(1):52-67, 1990. doi:10.1016/0196-6774(90)90029-E.

MW1994

Yiu-Kwong Man and Francis J. Wright. Fast Polynomial Dispersion Computation and its Application to Indefinite Summation. ISSAC 1994.

MW2009

Meshulam and Wallach, “Homological connectivity of random \(k\)-dimensional complexes”, preprint, math.CO/0609773.

N

NaiRow2011

Naidu and Rowell, A finiteness property for braided fusion categories. Algebr. Represent. Theory 14 (2011), no. 5, 837–855. arXiv 0903.4157.

Nas1950

John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36.1 (1950): 48-49.

Neu2018

Christian Neurohr, Efficient Integration on Riemann Surfaces & Applications, PhD Thesis, Carl von Ossietzky Universität Oldenburg http://oops.uni-oldenburg.de/3607.

New2003

Newman, M.E.J. The Structure and function of complex networks, SIAM Review vol. 45, no. 2 (2003), pp. 167-256. doi:10.1137/S003614450342480.

Nie2013

Johan S. R. Nielsen, List Decoding of Algebraic Codes, Ph.D. Thesis, Technical University of Denmark, 2013

Nie

Johan S. R. Nielsen, Codinglib, https://bitbucket.org/jsrn/codinglib/.

NW1978

A. Nijenhuis and H. Wilf, Combinatorial Algorithms, Academic Press (1978).

Nij1955

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indagationes Mathematicae (Proceedings) 58, 390 (1955).

Nik1977

V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications” Izv. Akad. Nauk SSSR Ser. Mat., 1979, Volume 43, Issue 1, Pages 111–177.

Nil2005

Benjamin Nill, “Gorenstein toric Fano varieties”, Manuscripta Math. 116 (2005), no. 2, 183-210. arXiv math/0405448v1 [math.AG]

NN2007

Nisan, Noam, et al., eds. Algorithmic game theory. Cambridge University Press, 2007.

NO2003

Sampo Niskanen and Patric R. J. Ostergard, Cliquer User’s Guide, Version 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003.

Nog1985

Arnaldo Nogueira, “Almost all Interval Exchange Transformations with Flips are Nonergodic” (Ergod. Th. & Dyn. Systems, Vol 5., (1985), 257-271

Normaliz

Winfried Bruns, Bogdan Ichim, and Christof Soeger, Normaliz, http://www.mathematik.uni-osnabrueck.de/normaliz/

NormalizMan

Winfried Bruns, Max Horn, Normaliz 3.8.5, 2020, https://github.com/Normaliz/Normaliz/blob/master/doc/Normaliz.pdf.

NoThWi08

J.-C. Novelli, J.-Y. Thibon, L. K. Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux. Advances in Mathematics, Volume 224, Issue 4, 10 July 2010, pp. 1311–1348, doi:10.1016/j.aim.2010.01.006, arXiv 0804.0995v3.

NovThi06

Jean-Christophe Novelli, Jean-Yves Thibon, Polynomial realizations of some trialgebras, FPSAC 2006. arXiv math/0605061v1.

NP2007

Nikolopoulos, S.D. and Palios, L., Detecting holes and antiholes in graphs, Algorithmica, 2007, Vol. 47, number 2, pages 119–138, doi:10.1007/s00453-006-1225-y, http://www.cs.uoi.gr/~stavros/C-Papers/C-2004-SODA.pdf

NWS2002

Newman, M.E.J., Watts, D.J. and Strogatz, S.H. Random graph models of social networks. Proc. Nat. Acad. Sci. USA 99:1 (2002), 2566-2572. doi:10.1073/pnas.012582999

NX2019

E. M. d. Nascimento, J. A. M. Xexeo “Name of Submission:FlexAEAD -A Lightweight Cipher withIntegrated Authentication” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf

NZ1997

T. Nakashima and A. Zelevinsky. Polyhedral Realizations of Crystal Bases for Quantized Kac-Moody Algebras. Adv. Math. 131, pp. 253–278, 1997.

NZ2012

T. Nakanishi and A. Zelevinsky, On tropical dualities in cluster algebras, Algebraic groups and quantum groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012, pp. 217-226.

Nze2007

Janvier Nzeutchap. Binary Search Tree insertion, the Hypoplactic insertion, and Dual Graded Graphs. arXiv 0705.2689 (2007).

O

OGKRKGBDDP2015

R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev, O. Kuznetsov, Y. Gorbenko, A. Boiko, O. Dyrda, V. Dolgov, and A. Pushkaryov, A new standard of ukraine: The kupyna hash function; in Cryptology ePrint Archive, (2015), 885.

Oha2011

R.A. Ohana. On Prime Counting in Abelian Number Fields. http://wstein.org/home/ohanar/papers/abelian_prime_counting/main.pdf.

OLJ2014

Paul W. Olsen, Alan G. Labouseur, Jeong-Hyon Hwang. Efficient Top-k Closeness Centrality Search, Proceedings of the IEEE 30th International Conference on Data Engineering (ICDE), 2014. doi:10.1109/ICDE.2014.6816651.

ONe1983

B. O’Neill : Semi-Riemannian Geometry, Academic Press (San Diego) (1983)

Onsager1944

Lars Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. (2) 65 (1944), pp. 117-149.

Ore1933

Oystein Ore. Theory of Non-Commutative Polynomials Annals of Mathematics, Second Series, Volume 34, Issue 3 (Jul., 1933), 480-508.

Or2017

M. Orlitzky. The Lyapunov rank of an improper cone. Optimization Methods and Software, 32(1):109-125, 2017, doi:10.1080/10556788.2016.1202246.

Or2018a

M. Orlitzky. Lyapunov rank of polyhedral positive operators. Linear and Multilinear Algebra, 66(5):992-1000, 2018, doi:10.1080/03081087.2017.1331998.

Or2018b

M. Orlitzky. Positive and Z-operators on closed convex cones. Electronic Journal of Linear Algebra, 34:444-458, 2018, doi:10.13001/1081-3810.3782.

ORV

Grigori Olshanski, Amitai Regev, Anatoly Vershik, Frobenius-Schur functions, arXiv math/0110077v1. Possibly newer version at http://www.wisdom.weizmann.ac.il/~regev/papers/FrobeniusSchurFunctions.ps

OT1994

Peter Orlik and Hiroaki Terao. Commutative algebras for arrangements. Nagoya Math. J. 134 (1994), 65-73.

OS2018

Se-jin Oh and Travis Scrimshaw. Categorical relations between Langlands dual quantum affine algebras: Exceptional cases. Preprint: arXiv 1802.09253 (2018).

OSS2009

Vitaly Osipov, Peter Sanders, Johannes Singler: The Filter-Kruskal Minimum Spanning Tree Algorithm. SIAM ALENEX, 2009: 52-61 doi:10.1137/1.9781611972894.5

Oum2009

Sang-il Oum, Computing rank-width exactly, Information Processing Letters, 2009, vol. 109, n. 13, p. 745–748, Elsevier. doi:10.1016/j.ipl.2009.03.018. http://mathsci.kaist.ac.kr/~sangil/pdf/2008exp.pdf

Oxl1992

James Oxley, Matroid theory, Oxford University Press, 1992.

Oxl2011

James Oxley, Matroid Theory, Second Edition. Oxford University Press, 2011.

P

Pak2002

Igor Pak, Hook length formula and geometric combinatorics, Seminaire Lotharingien de Combinatoire, 46 (2001), B46f, https://eudml.org/doc/121696

PALP

Maximilian Kreuzer, Harald Skarke: “PALP: A Package for Analyzing Lattice Polytopes with Applications to Toric Geometry” omput.Phys.Commun. 157 (2004) 87-106 arXiv math/0204356

Pana2002

F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, pages 211-219. Preprint: arXiv math/0003074v1

Pas1992

D. V. Pasechnik, Skew-symmetric association schemes with two classes and strongly regular graphs of type `L_{2n-1}(4n- 1)`, Acta Applicandaie Math. 29(1992), 129-138. doi:10.1007/BF00053382.

Pau2006

Sebastian Pauli, “Constructing Class Fields over Local Fields”, Journal de Théorie des Nombres de Bordeaux, Vol. 18, No. 3 (2006), pp. 627-652.

PearsonTest

Wikipedia article Goodness_of_fit, accessed 13th October 2009.

Pec2014

Oliver Pechenik, Cyclic sieving of increasing tableaux and small Schroeder paths, JCTA 125 (2014), 357-378, doi:10.1016/j.jcta.2014.04.002

Pen2012

R. Pendavingh, On the evaluation at \((-i, i)\) of the Tutte polynomial of a binary matroid. Preprint: arXiv 1203.0910

Per2007

Markus Perling, Divisorial Cohomology Vanishing on Toric Varieties, arXiv 0711.4836v2

Pet2010

Christiane Peters, Information-set decoding for linear codes over \(GF(q)\), Proc. of PQCrypto 2010, pp. 81-94.

Pha2002

R. C.-W. Phan. Mini advanced encryption standard (mini-AES): a testbed for cryptanalysis students. Cryptologia, 26(4):283–306, 2002.

Piz1980

A. Pizer. An Algorithm for Computing Modular Forms on \(\Gamma_0(N)\), J. Algebra 64 (1980), 340-390.

Platt1976

C. R. Platt, Planar lattices and planar graphs, Journal of Combinatorial Theory Series B, Vol 21, no. 1 (1976): 30-39.

PoiReu95

Stephane Poirier, Christophe Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math. Québec, 19 (1): 79–90. http://www.lacim.uqam.ca/~christo/Publi%C3%A9s/1995/Alg%C3%A8bres%20de%20Hopf%20de%20tableaux.pdf

PM2019

D. Penazzi, M. Montes. “Shamash (and Shamashash)” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ShamashAndShamashash-spec.pdf

Pol2003

Robert Pollack, On the `p`-adic `L`-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523-558.

Pol2009

J. Polhill, Negative Latin square type partial difference sets and amorphic association schemes with Galois rings, Journal of Combinatorial Designs 17, no. 3 (2009): 266-282. doi:10.1002/jcd.20206. http://onlinelibrary.wiley.com/doi/10.1002/jcd.20206/abstract

Pon2010

S. Pon. Types B and D affine Stanley symmetric functions, unpublished PhD Thesis, UC Davis, 2010.

Pons2013

Viviane Pons, Combinatoire algébrique liée aux ordres sur les permutations. PhD Thesis. (2013). arXiv 1310.1805v1.

Pons2018

Viviane Pons, The Rise-Contact involution on Tamari intervals. arXiv 1802.08335

Pop1972

V. M. Popov. “Invariant description of linear, time-invariant controllable systems”. SIAM Journal on Control, 10(2):252-264, 1972. doi:10.1137/0310020

Pos1988

H. Postl. ‘Fast evaluation of Dickson Polynomials’ Contrib. to General Algebra, Vol. 6 (1988) pp. 223-225

Pos2005

A. Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005) 473-509

PPW2013

D. Perkinson, J. Perlman, and J. Wilmes. Primer for the algebraic geometry of sandpiles. Tropical and Non-Archimedean Geometry, Contemp. Math., 605, Amer. Math. Soc., Providence, RI, 2013. arXiv 1112.6163

Proc1999

R. A. Proctor, Minuscule elements of Weyl groups, the numbers game, and d-complete posets. J. Algebra, 213(1):272–303, 1999.

PDynk1999

R. A. Proctor. Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets. J. Algebraic Combin., 9(1):61-94, 1999.

Proc2014

R. A. Proctor. \(d\)-complete posets generalize Young diagrams for the hook product formula: Partial Presentation of Proof. RIMS Kôkyûroku, 1913:120-140, 2014.

PR2003

Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en `p`, Experiment. Math. 12 (2003), no. 2, 155-186.

PR2015

P. Pilarczyk and P. Réal, Computation of cubical homology, cohomology, and (co)homological operations via chain contraction, Adv. Comput. Math. 41 (2015), pp 253–275.

PRC2012

G. Piret, T. Roche, and C. Carlet, PICARO - a block cipher allowing efficient higher-order side-channel resistance; in ACNS, (2012), pp. 311-328.

Prototype_pattern

Prototype pattern, Wikipedia article Prototype_pattern

PeSt2011

E. Pelantová, Š. Starosta, Infinite words rich and almost rich in generalized palindromes, in: G. Mauri, A. Leporati (Eds.), Developments in Language Theory, volume 6795 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 406–416

PS2002

Jim Pitman, Richard Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, J. Discrete Comput. Geom. (2002), 27:4, 603-634, doi:10.1007/s00454-002-2776-6, arXiv math/9908029.

PS2006

Dominique Poulalhon and Gilles Schaeffer, Optimal coding and sampling of triangulations, Algorithmica 46 (2006), no. 3-4, 505-527, doi:10.1007/s00453-006-0114-8, http://www.lix.polytechnique.fr/~poulalho/Articles/PoSc_Algorithmica06.pdf

PS2011

R. Pollack, and G. Stevens. Overconvergent modular symbols and p-adic L-functions. Annales scientifiques de l’École normale supérieure. Vol. 44. No. 1. Elsevier, 2011.

PSW1996

Boris Pittel, Joel Spencer and Nicholas Wormald. Sudden Emergence of a Giant k-Core in a Random Graph. (1996). J. Combinatorial Theory. Ser B 67. pages 111-151. doi:10.1006/jctb.1996.0036. [Online] Available: http://cs.nyu.edu/cs/faculty/spencer/papers/k-core.pdf

PT2009

S. Payne, J. A. Thas. Finite generalized quadrangles. European Mathematical Society, 2nd edition, 2009.

PUNTOS

Jesus A. De Loera http://www.math.ucdavis.edu/~deloera/RECENT_WORK/puntos2000

PvZ2010

R. A. Pendavingh, S. H. M. van Zwam, Lifts of matroid representations over partial fields, Journal of Combinatorial Theory, Series B, Volume 100, Issue 1, January 2010, Pages 36-67

PZ2008

J. H. Palmieri and J. J. Zhang, “Commutators in the Steenrod algebra,” New York J. Math. 19 (2013), 23-37.

Pro2001

James Propp. The Many Faces of Alternating Sign Matrices, Discrete Mathematics and Theoretical Computer Science 43 (2001): 58 arXiv math/0208125

Propp1997

James Propp, Generating Random Elements of Finite Distributive Lattices, Electron. J. Combin. 4 (1997), no. 2, The Wilf Festschrift volume, Research Paper 15. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v4i2r15

PW2013

Robin Pemantle and Mark C. Wilson. Analytic Combinatorics in Several Variables. Cambridge University Press, 2013.

PWZ1997

Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B, AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73–100

PZGH1999

Petho A., Zimmer H.G., Gebel J. and Herrmann E., Computing all S-integral points on elliptic curves Math. Proc. Camb. Phil. Soc. (1999), 127, 383-402

R

Rai2012

Alexander Raichev. Leinartas’s partial fraction decomposition. arXiv 1206.4740.

Raj1987

A. Rajan, Algorithmic applications of connectivity and related topics in matroid theory. Ph.D. Thesis, Northwestern university, 1987.

Ram1991

Arun Ram, A Frobenius formula for the characters of the Hecke algebras. Invent. Math. 106 (1991), pp. 461-488.

Ram1997

Arun Ram. Seminormal representations of Weyl groups and Iwahori-Hecke algebras. Proc. London Math. Soc. (3) 75 (1997). 99-133. arXiv math/9511223v1. http://www.ms.unimelb.edu.au/~ram/Publications/1997PLMSv75p99.pdf

Rau1979

Gerard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34, no. 3, 203-212, 1980

RCES1994

Ruskey, R. Cohen, P. Eades, A. Scott. Alley CATs in search of good homes. Congressus numerantium, 1994. Pages 97–110

Rea2004

Nathan Reading. Cambrian Lattices. arXiv math/0402086v2.

Rea2009

Nathan Reading, Noncrossing partitions and the shard intersection order, DMTCS Proceedings of FPSAC 2009, 745–756

ReSt2020

Nathan Reading and Salvatore Stella, An affine almost positive roots model, J. Comb. Algebra Volume 4, Issue 1, 2020, pp. 1–59

Red2001

Maria Julia Redondo. Hochschild cohomology: some methods for computations. Resenhas IME-USP 5 (2), 113-137 (2001). http://inmabb.criba.edu.ar/gente/mredondo/crasp.pdfc

Reg09

Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. in Journal of the ACM 56(6). ACM 2009, doi:10.1145/1060590.1060603

Reg1958

T. Regge, ‘Symmetry Properties of Clebsch-Gordan Coefficients’, Nuovo Cimento, Volume 10, pp. 544 (1958)

Reg1959

T. Regge, ‘Symmetry Properties of Racah Coefficients’, Nuovo Cimento, Volume 11, pp. 116 (1959)

Reg2005

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC, pp. 84–93, ACM, 2005.

Reu1993

C. Reutenauer. Free Lie Algebras. Number 7 in London Math. Soc. Monogr. (N.S.). Oxford University Press. (1993).

Reu2003

Christophe Reutenauer. Free Lie algebras. Preprint of a chapter in the Handbook of Algebra, 2003. Downloadable from Reutenauer’s website

Rho69

John Rhodes, Characters and complexity of finite semigroups J. Combinatorial Theory, vol 6, 1969

RH2003

J. Rasch and A. C. H. Yu, ‘Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients’, SIAM J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)

RH2003b

G. G. Rose and P. Hawkes, Turing: A fast stream cipher; in FSE, (2003), pp. 290-306.

Rio1958

J. Riordan, “An Introduction to Combinatorial Analysis”, Dover Publ. (1958)

Rio2019

S. Riou, “DryGASCON: Lightweight Cryptography Standardization Process round 1 submission” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/drygascon-spec.pdf

Ris2016

Roswitha Rissner, “Null ideals of matrices over residue class rings of principal ideal domains”. Linear Algebra Appl., 494 (2016) 44–69. doi:10.1016/j.laa.2016.01.004.

RL1971

J. Rokne, P. Lancaster. Complex interval arithmetic. Communications of the ACM 14. 1971.

RMA2009

P. Réal and H. Molina-Abril, Cell AT-models for digital volumes in Torsello, Escolano, Brun (eds.), Graph-Based Representations in Pattern Recognition, Lecture Notes in Computer Science, volume 5534, pp. 314-3232, Springer, Berlin (2009).

RNPA2011

G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh. Bilinear optimality constraints for the cone of positive polynomials. Mathematical Programming, Series B, 129 (2011) 5-31.

RPK1980

S. M. Reddy, D. K. Pradhan, and J. Kuhl. “Directed graphs with minimal diameter and maximal connectivity”, School Eng., Oakland Univ., Rochester MI, Tech. Rep., July 1980.

RPK1983

S. Reddy, P. Raghavan, and J. Kuhl. “A Class of Graphs for Processor Interconnection”. IEEE International Conference on Parallel Processing, pages 154-157, Los Alamitos, Ca., USA, August 1983.

Rob1991

Tom Roby, “Applications and extensions of Fomin’s generalization of the Robinson-Schensted correspondence to differential posets”. Ph.D. Thesis, M.I.T., Cambridge, Massachusetts, 1991.

Roberts2015

David P. Roberts, Hypergeometric Motives I, https://icerm.brown.edu/materials/Slides/sp-f15-offweeks/Hypergeomteric_Motives,_I_]_David_Roberts,_University_of_Minnesota_-_Morris.pdf

Roberts2017

David P. Roberts, Hypergeometric motives and an unusual application of the Guinand-Weil-Mestre explicit formula, https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2016/04/Roberts-2.pdf

Roc1970

R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, 1970.

Roe1988

John Roe, Elliptic operators, topology and asymptotic methods. 2nd edition. CRC Press, 1988.

Rog2018

Baptiste Rognerud, Exceptional and modern intervals of the Tamari lattice. arXiv 1801.04097

Ros1999

K. Rosen Handbook of Discrete and Combinatorial Mathematics (1999), Chapman and Hall.

Ros2002

Rosenfeld, Vladimir Raphael, 2002: Enumerating De Bruijn Sequences. Communications in Math. and in Computer Chem.

Rot2001

Gunter Rote, Division-Free Algorithms for the Determinant and the Pfaffian: Algebraic and Combinatorial Approaches, H. Alt (Ed.): Computational Discrete Mathematics, LNCS 2122, pp. 119–135, 2001. http://page.mi.fu-berlin.de/rote/Papers/pdf/Division-free+algorithms.pdf

Rot2006

Ron Roth, Introduction to Coding Theory, Cambridge University Press, 2006

Row2006

Eric Rowell, From quantum groups to unitary modular tensor categories. In Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math., 413, Amer. Math. Soc., Providence, RI, 2006. arXiv math/0503226.

RoStWa2009

Eric Rowell, Richard Stong and Zhenghan Wang, On classification of modular tensor categories, Comm. Math. Phys. 292, 343–389, 2009.

RR1997

Arun Ram and Jeffrey Remmel. Applications of the Frobenius formulas and the characters of the symmetric group and the Hecke algebras of type A. J. Algebraic Combin. 6 (1997), 59-87.

RSS

Wikipedia article Residual_sum_of_squares, accessed 13th October 2009.

RSW2011

Victor Reiner, Franco Saliola, Volkmar Welker. Spectra of Symmetrized Shuffling Operators. arXiv 1102.2460v2.

RT1975a

Read, R. C. and Tarjan, R. E. Bounds on Backtrack Algorithms for Listing Cycles, Paths, and Spanning Trees. Networks, Volume 5 (1975), numer 3, pages 237-252. doi:10.1002/net.1975.5.3.237.

RT1975

Rose, D.J. and Tarjan, R.E., Algorithmic aspects of vertex elimination, Proceedings of seventh annual ACM symposium on Theory of computing, Pages 245-254, ACM 1975. doi:10.1145/800116.803775.

RTL76

Donald J. Rose, Robert Endre Tarjan and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput., 5(2), 266–283 (1976).

Rub1991

K. Rubin. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), no. 1, 25–68.

Rud1958

M. E. Rudin. An unshellable triangulation of a tetrahedron. Bull. Amer. Math. Soc. 64 (1958), 90-91.

Rus2003

Frank Ruskey. Combinatorial Generation. (2003). http://www.1stworks.com/ref/ruskeycombgen.pdf

Rüt2014

Julian Rüth, Models of Curves and Valuations. Open Access Repositorium der Universität Ulm. Dissertation (2014). doi:10.18725/OPARU-3275

RV2007

Fernando Rodriguez Villegas. Experimental Number Theory. Oxford Graduate Texts in Mathematics 13, 2007.

RW2008

Alexander Raichev and Mark C. Wilson. Asymptotics of coefficients of multivariate generating functions: improvements for smooth points, Electronic Journal of Combinatorics, Vol. 15 (2008). R89 arXiv 0803.2914.

RW2012

Alexander Raichev and Mark C. Wilson. Asymptotics of coefficients of multivariate generating functions: improvements for smooth points. Online Journal of Analytic Combinatorics. Issue 6, (2011). arXiv 1009.5715.

S

Saa2011

M-J. O. Saarinen, Cryptographic Analysis of All 4 x 4-Bit S-Boxes; in SAC, (2011), pp. 118-133.

Sag1987

Bruce E. Sagan. Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley. Journal of Combinatorial Theory, Series A Volume 45 (1987), pp. 62-103.

Sag2001

Bruce E. Sagan. The Symmetric Group, 2nd edition, New York 2001.

Sag2011

Bruce E. Sagan, The cyclic sieving phenomenon: a survey, arXiv 1008.0790v3

Sah2000

Sartaj Sahni. Data Structures, Algorithms, and Applications in Java. McGraw-Hill, 2000.

Sal1954

G. Salmon: “A Treatise on Conic Sections”, Chelsea Publishing Co., New York, 1954.

Sal1958

G. Salmon: “A Treatise on the Analytic Geometry of Three Dimensions”, Vol. I, Chelsea Publishing Company, New York, 1958.

Sal1965

G. Salmon: “A Treatise on the Analytic Geometry of Three Dimensions”, Vol II, Chelsea Publishing Co., New York, 1965.

Sal2014

B. Salisbury. The flush statistic on semistandard Young tableaux. arXiv 1401.1185

Sam2012

P. Samanta: Antipodal Graphs doi:10.13140/RG.2.2.28238.46409

Sch1990

Schnyder, Walter. Embedding Planar Graphs on the Grid. Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco (1994), pp. 138-147.

Sch1996

E. Schaefer. A simplified data encryption algorithm. Cryptologia, 20(1):77–84, 1996.

Sch1999

Gilles Schaeffer, Random Sampling of Large Planar Maps and Convex Polyhedra, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999). doi:10.1145/301250.301448.

Sch2003

Alexander Schrijver, Combinatorial optimization: polyhedra and efficiency, 2003.

Sch2004

Manfred Schocker, The descent algebra of the symmetric group. Fields Inst. Comm. 40 (2004), pp. 145-161. http://www.mathematik.uni-bielefeld.de/~ringel/schocker-neu.ps

Sch2006

Oliver Schiffmann. Lectures on Hall algebras, preprint, 2006. arXiv 0611617v2.

Sch2008

A. Schilling. “Combinatorial structure of Kirillov-Reshetikhin crystals of type \(D_n(1)\), \(B_n(1)\), \(A_{2n-1}(2)\)”. J. Algebra. 319 (2008). 2938-2962. arXiv 0704.2046.

Sch2013

Schmidt, Jens M “A Simple Test on 2-Vertex- and 2-Edge-Connectivity”, Information Processing Letters, 113 (7): 241–244 doi:10.2307/2303897

Sch2015

George Schaeffer. Hecke stability and weight 1 modular forms. Math. Z. 281:159–191, 2015. doi:10.1007/s00209-015-1477-9

Sco1985

R. Scott, Wide-open encryption design offers flexible implementations; in Cryptologia, (1985), pp. 75-91.

SE1962

N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud. 50 (Princeton University Press, 1962).

Ser1972

Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331.

Ser1987

Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de \(\text{Gal}(\bar\QQ/\QQ)\). Duke Math. J. 54 (1987), no. 1, 179–230.

Ser1985

C. Series. The geometry of Markoff numbers. The Mathematical Intelligencer, 7(3):20–29, 1985.

Ser1992

J.-P. Serre : Lie Algebras and Lie Groups, 2nd ed., Springer (Berlin) (1992); doi:10.1007/978-3-540-70634-2

Ser2010

F. Sergeraert, Triangulations of complex projective spaces in Scientific contributions in honor of Mirian Andrés Gómez, pp 507-519, Univ. La Rioja Serv. Publ., Logroño (2010).

Sey1981

P. D. Seymour, Nowhere-zero 6-flows, J. Comb. Theory Ser B, 30 (1981), 130-135. doi:10.1016/0095-8956(81)90058-7

SH1995

C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction. Advances in Cryptology - EUROCRYPT ‘95. LNCS Volume 921, 1995, pp 1-12.

SH1995b

Bernd Sturmfels, Serkan Hosten: GRIN: An implementation of Grobner bases for integer programming, in “Integer Programming and Combinatorial Optimization”, [E. Balas and J. Clausen, eds.], Proceedings of the IV. IPCO Conference (Copenhagen, May 1995), Springer Lecture Notes in Computer Science 920 (1995) 267-276.

Sha1997

Ron Shamir, Advanced Topics in Graph Algorithms, Course material, 1997, http://www.cs.tau.ac.il/~rshamir/atga/atga.html

SHET2018

O. Seker, P. Heggernes, T. Ekim, and Z. Caner Taskin. Generation of random chordal graphs using subtrees of a tree, arXiv 1810.13326v1.

Shi2002

M. Shimozono Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002). no. 2. 151-187. arXiv math.QA/9804039.

Shim2016

Shimada, Ichiro, Connected components of the moduli of elliptic K3 surfaces, arXiv 1610.04706.

Shi1971

Goro Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan and Princeton University Press, 1971.

Shr2004

S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models. New York: Springer, 2004

SIHMAS2011

K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, Piccolo: An ultra-lightweight block-cipher; in CHES, (2011), pp. 342-457.

Sil1988

Joseph H. Silverman, Computing heights on elliptic curves. Mathematics of Computation, Vol. 51, No. 183 (Jul., 1988), pp. 339-358.

Sil1994

Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves. GTM 151, Springer-Verlag, New York, 1994.

Sil2007

Joseph H. Silverman. The Arithmetic of Dynamics Systems. GTM 241, Springer-Verlag, New York, 2007.

Sil2009

Joseph H. Silverman, The Arithmetic of Elliptic Curves. Second edition. Graduate Texts in Mathematics, 106. Springer, 2009.

Sim2004

Aron Simis, “Cremona transformations and some related algebras”. Journal of Algebra 280.1 (2004), 162-179.

SK2011

J. Spreer and W. Kühnel, “Combinatorial properties of the K3 surface: Simplicial blowups and slicings”, Experimental Mathematics, Volume 20, Issue 2, 2011.

SKWWHF1998

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, Twofish: A 128-bit block cipher; in AES Submission, (1998).

Sky2003

Brian Skyrms. The stag hunt and the evolution of social structure. Cambridge University Press, 2003.

SLB2008

Shoham, Yoav, and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, 2008.

SMMK2013

T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, TWINE: A lightweight block cipher for multiple platforms; in SAC, (2012), pp. 338-354.

SMS2019

S. Sarkar, K. Mandal, D. Saha “Sycon v1.0 Submission to LightweightCryptographic Standards” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/sycon-spec.pdf

Sor1984

A. Sorkin, LUCIFER: a cryptographic algorithm; in Cryptologia, 8(1), pp. 22–35, 1984.

Sma1995

N.P. Smart, The Solution of Triangularly Connected Decomposable Form Equations. Math. Comp. 64 (1995), 819-840. doi:10.1090/S0025-5718-1995-1277771-4.

Sma1998

N.P. Smart, The algorithmic resolution of Diophantine equations, Number 41 in Student Texts. London Mathematical Society, 1998.

SP2010

Fernando Solano and Michal Pioro, Lightpath Reconfiguration in WDM networks, IEEE/OSA Journal of Optical Communication and Networking 2(12):1010-1021, 2010. doi:10.1364/JOCN.2.001010.

Sot2011

M. A. Soto Gomez. 2011. Quelques propriétés topologiques des graphes et applications à internet et aux réseaux. Ph.D. Dissertation. Univ. Paris Diderot (Paris 7). https://tel.archives-ouvertes.fr/tel-01259904/document

Spa1966

Edwin H. Spanier, Algebraic Topology, Springer-Verlag New York, 1966. doi:10.1007/978-1-4684-9322-1, ISBN 978-1-4684-9322-1.

Spe2013

D. Speyer, An infinitely generated upper cluster algebra, arXiv 1305.6867.

SPGQ2006

F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater, Sea: A scalable encryption algorithm for small embedded applications; in CARDIS, (2006), pp. 222-236.

SPRQL2004

F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquarter, and J.-D. Legat, ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware; in FSE, (2004), pp. 279-299.

Squ1984

C. C. Squier. The Burau representation is unitary. Proceedings of the American Mathematical Society, Volume 90. Number 2, February 1984, pp. 199-202.

SS1983

Shorey and Stewart. “On the Diophantine equation a x^{2t} + b x^t y + c y^2 = d and pure powers in recurrence sequences.” Mathematica Scandinavica, 1983.

SS1990

Bruce E. Sagan and Richard P. Stanley. Robinson-Schensted algorithms for skew tableaux. Journal of Combinatorial Theory, Series A 55.2 (1990) pp. 161-193.

SS1992

M. A. Shtan’ko and M. I. Shtogrin, “Embedding cubic manifolds and complexes into a cubic lattice”, Uspekhi Mat. Nauk 47 (1992), 219-220.

SS2008

Geoffrey Scott and Christopher Storm, The coefficients of the Ihara zeta function, Involve, Vol. 1 (2008), No. 2, 217-233, doi:10.2140/involve.2008.1.217 (http://msp.org/involve/2008/1-2/involve-v1-n2-p08-p.pdf)

SS2015

Anne Schilling and Travis Scrimshaw. Crystal structure on rigged configurations and the filling map. Electron. J. Combin., 22(1) (2015) #P1.73. arXiv 1409.2920.

SS2015II

Ben Salisbury and Travis Scrimshaw. A rigged configuration model for \(B(\infty)\). J. Combin. Theory Ser. A, 133 (2015) pp. 29-75. arXiv 1404.6539.

SS2016

Alberto Seeger and David Sossa. Critical angles between two convex cones I. General theory. TOP, 24(1):44-65, 2016. doi:10.1007/s11750-015-0375-y.

SS2017

Ben Salisbury and Travis Scrimshaw. Rigged configurations for all symmetrizable types. Electron. J. Combin., 24(1) (2017) #P1.30. arXiv 1509.07833.

SS2018

Ben Salisbury and Travis Scrimshaw. Description of crystals for generalized Kac–Moody algebras using rigged configurations. Sém. Lothar. Combin. 80B (2018), Art. #20, 12 pp.

SSAMI2007

T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, The 128-bit blockcipher CLEFIA (extended abstract); in FSE, (2007), pp. 181-195.

ST1993

P. D. Seymour and Robin Thomas, Graph searching and a min-max theorem for tree-width, J. Comb. Theory Ser. B 58, 1 (May 1993), 22-33. doi:10.1006/jctb.1993.1027.

ST1994

Simon, K. and Trunz, P., A cleanup on transitive orientation, Orders, Algorithms, and Applications, 1994, doi:10.1007/BFb0019427, ftp://ftp.inf.ethz.ch/doc/papers/ti/ga/ST94.ps.gz

ST2010

Einar Steingrimmsson and Bridget Tenner. The Moebius Function of the Permutation Pattern Poset, Journal of Combinatorics 1 (2010), 39-52

ST2011

A. Schilling, P. Tingley. Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. Electronic Journal of Combinatorics. 19(2). 2012. arXiv 1104.2359

Sta1979

Richard Stanley. Invariants of Finite Groups and their, applications to combinatorics. Bulletin (New Series) of the American Mathematical Society, *1* no.3 (1979), 457-511.

St1986

Richard Stanley. Two poset polytopes, Discrete Comput. Geom. (1986), doi:10.1007/BF02187680

Sta1973

H. M. Stark, Class-Numbers of Complex Quadratic Fields. In: Kuijk W. (eds) Modular Functions of One Variable I. Lecture Notes in Mathematics, vol 320. (1973), Springer, Berlin, Heidelberg

Sta1995

R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., *111* no.1 (1995), 166-194. doi:10.1006/aima.1995.1020.

Sta2002

Richard P. Stanley, The rank and minimal border strip decompositions of a skew partition, J. Combin. Theory Ser. A 100 (2002), pp. 349-375. arXiv math/0109092v1.

Sta2007

Stanley, Richard: Hyperplane Arrangements, Geometric Combinatorics (E. Miller, V. Reiner, and B. Sturmfels, eds.), IAS/Park City Mathematics Series, vol. 13, American Mathematical Society, Providence, RI, 2007, pp. 389-496.

EnumComb1

Stanley, Richard P. Enumerative Combinatorics, volume 1, Second Edition, Cambridge University Press (2011). http://math.mit.edu/~rstan/ec/ec1/

EnumComb2

Stanley, Richard P. Enumerative Combinatorics, volume 2. Cambridge University Press (1999). http://math.mit.edu/~rstan/ec/

Star2011

Š. Starosta, On Theta-palindromic Richness, Theoret. Comp. Sci. 412 (2011) 1111–1121

St2011b

W. Stein, Toward a Generalization of the Gross-Zagier Conjecture, Int Math Res Notices (2011), doi:10.1093/imrn/rnq075

St2007

W. Stein. Modular Forms, a Computational Approach. With an appendix by Paul E. Gunnells. AMS Graduate Studies in Mathematics, Volume 79, 2007. doi:10.1090/gsm/079

Sei2002

T. R. Seifullin, Computation of determinants, adjoint matrices, and characteristic polynomials without division doi:10.1023/A:1021878507303

ST1981

J. J. Seidel and D. E. Taylor, Two-graphs, a second survey. Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 689–711, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981.

Stan2009

Richard Stanley, Promotion and evacuation, Electron. J. Combin. 16 (2009), no. 2, Special volume in honor of Anders Björner, Research Paper 9, 24 pp.

Ste1996

John R. Stembridge, On the fully commutative elements of Coxeter groups, Journal of Algebraic Combinatorics, 5, pp. 355-385

Ste1998

John R. Stembridge, The enumeration of the fully commutative elements of Coxeter groups, Journal of Algebraic Combinatorics, 7, pp. 291-320.

Ste2003

John R. Stembridge, A local characterization of simply-laced crystals, Transactions of the American Mathematical Society, Vol. 355, No. 12 (Dec., 2003), pp. 4807–4823

Stich2009

Stichtenoth, Henning. Algebraic function fields and codes. Vol. 254. Springer Science & Business Media, 2009.

Sti2006

Douglas R. Stinson. Cryptography: Theory and Practice. 3rd edition, Chapman & Hall/CRC, 2006.

Sto1998

A. Storjohann, An O(n^3) algorithm for Frobenius normal form. Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’98), ACM Press, 1998, pp. 101-104.

Sto2000

A. Storjohann, Algorithms for Matrix Canonical Forms. PhD Thesis. Department of Computer Science, Swiss Federal Institute of Technology – ETH, 2000.

Sto2011

A. Storjohann, Email Communication. 30 May 2011.

Str1969

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354-356, 1969.

Striker2011

J. Striker. A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux, Advances in Applied Mathematics 46 (2011), no. 4, 583-609. arXiv 1408.5391

Str2015

Jessica Striker. The toggle group, homomesy, and the Razumov-Stroganov correspondence, Electron. J. Combin. 22 (2015) no. 2 arXiv 1503.08898

Stu1987

J. Sturm, On the congruence of modular forms, Number theory (New York, 1984-1985), Springer, Berlin, 1987, pp. 275-280.

Stu1993

B. Sturmfels, Algorithms in invariant theory, Springer-Verlag, 1993.

Stu1995

Bernd Sturmfels, Grobner Bases and Convex Polytopes AMS University Lecture Series Vol. 8 (01 December 1995)

Stu1997

Bernd Sturmfels, Equations defining toric varieties, Algebraic Geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 437-449.

Stu2008

C. Stump – More bijective Catalan combinatorics on permutations and on colored permutations, Preprint. arXiv 0808.2822.

STW2013

J. Schejbal, E. Tews, and J. Wälde, Reverse engineering of chiasmus from gstool; in 30c3, (2013).

STW2016

C. Stump, H. Thomas, N. Williams. Cataland II, in preparation, 2016.

STW2018

Christian Stump, Hugh Thomas and Nathan Williams, Cataland: why the fuss?, 2018. arXiv 1503.00710

SU2014

Christopher Skinner and Eric Urban, The Iwasawa main conjectures for GL2. Invent. Math. 195 (2014), no. 1, 1-277.

sudoku:escargot

“Al Escargot”, due to Arto Inkala, http://timemaker.blogspot.com/2006/12/ai-escargot-vwv.html

sudoku:norvig

Perter Norvig, “Solving Every Sudoku Puzzle”, http://norvig.com/sudoku.html

sudoku:royle

Gordon Royle, “Minimum Sudoku”, http://people.csse.uwa.edu.au/gordon/sudokumin.php

sudoku:top95

“95 Hard Puzzles”, http://magictour.free.fr/top95, or http://norvig.com/top95.txt

sudoku:wikipedia

“Near worst case”, Wikipedia article Algorithmics_of_sudoku

Sulzgr2017

Robin Sulzgruber, Inserting rim-hooks into reverse plane partitions, arXiv 1710.09695v1.

Sun2010

Yi Sun. The McKay correspondence. http://www.math.miami.edu/~armstrong/686sp13/McKay_Yi_Sun.pdf 2010

Sut2002

Ruedi Suter. Young’s Lattice and Dihedral Symmetries. Europ. J. Combinatorics (2002) 23, 233–238. http://www.sciencedirect.com/science/article/pii/S0195669801905414

Sut2012

Sutherland. A local-global principle for rational isogenies of prime degree. Journal de Théorie des Nombres de Bordeaux, 2012.

Suth2008

Andrew V. Sutherland, Structure computation and discrete logarithms in finite abelian p-groups. Mathematics of Computation 80 (2011), pp. 477-500. arXiv 0809.3413v3.

SV1970

H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM Journal on Numerical Analysis, 7:508-519, 1970.

SV2000

J. Stern and S. Vaudenay, CS-Cipher; in First Open NESSIE Workshop, (2000).

SV2013

Silliman and Vogt. “Powers in Lucas Sequences via Galois Representations.” Proceedings of the American Mathematical Society, 2013. arXiv 1307.5078v2

SW1999

Steger, A. and Wormald, N. Generating random regular graphs quickly. Prob. and Comp. 8 (1999), pp 377-396. doi:10.1017/S0963548399003867.

SW2002

William Stein and Mark Watkins, A database of elliptic curves—first report. In Algorithmic number theory (ANTS V), Sydney, 2002, Lecture Notes in Computer Science 2369, Springer, 2002, p267–275. http://modular.math.washington.edu/papers/stein-watkins/

SW2012

John Shareshian and Michelle Wachs. Chromatic quasisymmetric functions and Hessenberg varieties. Configuration Spaces. CRM Series. Scuola Normale Superiore. (2012) pp. 433-460. doi:10.1007/978-88-7642-431-1_20. http://www.math.miami.edu/~wachs/papers/chrom.pdf

SW2013

W. Stein and C. Wuthrich, Algorithms for the Arithmetic of Elliptic Curves using Iwasawa Theory Mathematics of Computation 82 (2013), 1757-1792.

St1922

Ernst Steinitz, Polyeder und Raumeinteilungen. In Encyclopädie der Mathematischen Wissenschaften, Franz Meyer and Hand Mohrmann, eds., volume 3, Geometrie, erster Teil, zweite Hälfte, pp. 1–139, Teubner, Leipzig, 1922

SU2009

J. Smillie and C. Ulcigrai. Symbolic coding for linear trajectories in the regular octagon, arXiv 0905.0871, 2009.

Swe1969

Moss Sweedler. Hopf algebras. W.A. Benjamin, Math Lec Note Ser., 1969.

SWJ2008

Fatima Shaheen, Michael Wooldridge, and Nicholas Jennings. A linear approximation method for the Shapley value. Artificial Intelligence 172.14 (2008): 1673-1699.

SWW1972

A. Street, W. Wallis, J. Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices. Lecture notes in Mathematics 292 (1972).

Sys1987

Maciej M. SysŁo, Minimizing the jump number for partially-ordered sets: a graph-theoretic approach, II. Discrete Mathematics, Volume 63, Issues 2-3, 1987, Pages 279-295.

SYYTIYTT2002

T. Shimoyama, H. Yanami, K. Yokoyama, M. Takenaka, K. Itoh, J. Yajima, N. Torii, and H. Tanaka, The block cipher SC2000; in FSE, (2001), pp. 312-327.

Sz1969

G. Szekeres, Tournaments and Hadamard matrices, Enseignement Math. (2) 15(1969), 269-278

SZ1994

Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM transactions on mathematical software, 20.2:163-177, 1994.

SZ2001

M. Shimozono, M. Zabrocki, Hall-Littlewood vertex operators and generalized Kostka polynomials. Adv. Math. 158 (2001), no. 1, 66-85.

T

Tak1999

Kisao Takeuchi, Totally real algebraic number fields of degree 9 with small discriminant, Saitama Math. J. 17 (1999), 63–85 (2000).

Tam1962

Dov Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (1962).

Tar1976

Robert E. Tarjan, Edge-disjoint spanning trees and depth-first search, Acta Informatica 6 (2), 1976, 171-185, doi:10.1007/BF00268499.

Tarjan72

R.E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972).

Tate1975

John Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil. Modular functions of one variable, IV, pp. 33–52. Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975.

Tate1966

John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Seminaire Bourbaki, Vol. 9, Exp. No. 306, 1966.

TB1997

Lloyd N. Trefethen and David Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

TCHP2008

Marc Tedder, Derek Corneil, Michel Habib and Christophe Paul, Simple, linear-time modular decomposition, 2008. arXiv 0710.3901.

Tee1997

Tee, Garry J. “Continuous branches of inverses of the 12 Jacobi elliptic functions for real argument”. 1997. https://researchspace.auckland.ac.nz/bitstream/handle/2292/5042/390.pdf.

Ter2011

Audrey Terras, Zeta functions of graphs: a stroll through the garden, Cambridge Studies in Advanced Mathematics, Vol. 128, 2011.

Terwilliger2011

Paul Terwilliger. The universal Askey-Wilson algebra. SIGMA 7 (2011), 069, 24 pages. arXiv 1104.2813.

Ter2021

Paul Terwilliger. The alternating central extension of the \(q\) (2021).

Ter2021b

Paul Terwilliger. The alternating central extension of the Onsager Lie algebra. Preprint, arXiv 2104.08106 (2021).

TP1994

J. Thas, S. Payne, Spreads and ovoids in finite generalized quadrangles. Geometriae Dedicata, Vol. 52, pp. 227-253, 1994.

Tho2010

T. Thongjunthug, Computing a lower bound for the canonical height on elliptic curves over number fields, Math. Comp. 79 (2010), pages 2431-2449.

Tho2011

Anders Thorup. ON THE INVARIANTS OF THE SPLITTING ALGEBRA, 2011, arXiv 1105.4478

TIDES

A. Abad, R. Barrio, F. Blesa, M. Rodriguez. TIDES tutorial: Integrating ODEs by using the Taylor Series Method (http://www.unizar.es/acz/05Publicaciones/Monografias/MonografiasPublicadas/Monografia36/IndMonogr36.htm)

TingleyLN

Peter Tingley. Explicit \(\widehat{\mathfrak{sl}}_n\) crystal maps between cylindric plane partitions, multi-partitions, and multi-segments. Lecture notes. http://webpages.math.luc.edu/~ptingley/lecturenotes/explicit_bijections.pdf

Tingley2007

Peter Tingley. Three combinatorial models for \(\widehat{\mathfrak{sl}}_n\) crystals, with applications to cylindric plane partitions. International Mathematics Research Notices. (2007). arXiv 0702062v3.

TK2013

F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large graphs. Algorithms 6:100-118 (2013). doi:10.3390/a6010100.

TOPCOM

J. Rambau, TOPCOM <http://www.rambau.wm.uni-bayreuth.de/TOPCOM/>.

TW1980

A.D. Thomas and G.V. Wood, Group Tables (Exeter: Shiva Publishing, 1980)

TY1984

Robert Endre Tarjan, Mihalis Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13:566-579, 1984. doi:10.1137/0213035

TY2009

Hugh Thomas and Alexander Yong, A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra and Number Theory 3 (2009), 121-148, https://projecteuclid.org/euclid.ant/1513797353

U

UDCIKMP2011

M. Ullrich, C. De Canniere, S. Indesteege, Ö. Kücük, N. Mouha, and B. Preenel, Finding Optimal Bitsliced Implementations of 4 x 4-bit S-boxes; in SKEW, (2011).

Ukko1995

E. Ukkonen, On-line construction of suffix trees, Algorithmica, 1995, volume 14, number 3, pages 249–260.

UNITTEST

unittest – Unit testing framework – https://docs.python.org/library/unittest.html

U.S1998

U.S. Department Of Commerce/National Institute of Standards and Technology, Skipjack and KEA algorithms specifications, v2.0, (1998).

U.S1999

U.S. Department Of Commerce/National Institute of Standards and Technology, Data Encryption Standard, (1999). https://csrc.nist.gov/CSRC/media/Publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf

V

Vai1994

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Springer Basel AG (Basel) (1994); doi:10.1007/978-3-0348-8495-2

Var1984

V. S. Varadarajan. Lie groups, Lie algebras, and their representations. Reprint of the 1974 edition. Graduate Texts in Mathematics, 102. Springer-Verlag, New York, 1984.

Vat2008

D. Vatne, The mutation class of \(D_n\) quivers, arXiv 0810.4789v1.

Vazirani2002

Monica Vazirani. Parameterizing Hecek algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Transform. Groups 7 (2002). pp. 267-303. arXiv 0107052v1, doi:10.1007/s00031-002-0014-1.

VB1996

E. Viterbo, E. Biglieri. Computing the Voronoi Cell of a Lattice: The Diamond-Cutting Algorithm. IEEE Transactions on Information Theory, 1996.

VBB1992

Marc Van Barel and Adhemar Bultheel. “A general module theoretic framework for vector M-Padé and matrix rational interpolation.” Numer. Algorithms, 3:451-462, 1992. doi:10.1007/BF02141952

VDKT2016

E. R. van Dam, J. H. Koolen, H. Tanaka, Distance Regular graphs The Electronic Journal of Combinatorics. 2016

Vee1978

William Veech, “Interval exchange transformations”, J. Analyse Math. 33 (1978), 222-272

Ver

Helena Verrill, “Fundamental domain drawer”, Java program, http://www.math.lsu.edu/~verrill/

Vie1979

Gérard Viennot. Permutations ayant une forme donnée. Discrete Mathematics 26.3 (1979): 279-284.

Vie1983

Xavier G. Viennot. Maximal chains of subwords and up-down sequences of permutations. Journal of Combinatorial Theory, Series A Volume 34, (1983), pp. 1-14.

VJ2004

S. Vaudenay and P. Junod, Device and method for encrypting and decryptiong a block of data Fox, a New Family of Block Ciphers, (2004).

VO2005

A. M. Vershik, A. Yu. Okounkov. A New Approach to the Representation Theory of the Symmetric Groups. 2, 2005. arXiv math/0503040v3.

Voe2003

V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. No. 98 (2003), 1-57.

Voi2008

John Voight, Enumeration of totally real number fields of bounded root discriminant, Lect. Notes in Comp. Sci. 5011 (2008).

Voi2012

J. Voight. Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, to appear.

VW1994

Leonard Van Wyk. Graph groups are biautomatic. J. Pure Appl. Alg. 94 (1994). no. 3, 341-352.

W

Wac2003

Wachs, “Topology of Matching, Chessboard and General Bounded Degree Graph Complexes” (Algebra Universalis Special Issue in Memory of Gian-Carlo Rota, Algebra Universalis, 49 (2003) 345-385)

Wal1960

C. T. C. Wall, “Generators and relations for the Steenrod algebra,” Ann. of Math. (2) 72 (1960), 429-444.

Wal1970

David W. Walkup, “The lower bound conjecture for 3- and 4-manifolds”, Acta Math. 125 (1970), 75-107.

Wal2001

Timothy Walsh, Gray codes for involutions, J. Combin. Math. Combin. Comput. 36 (2001), 95-118. http://www.info2.uqam.ca/~walsh_t/papers/Involutions%20paper.pdf

Walton1990

Mark A. Walton. Fusion rules in Wess-Zumino-Witten models. Nuclear Phys. B 340 (1990).

Wam1999

van Wamelen, Paul. Examples of genus two CM curves defined over the rationals. Math. Comp. 68 (1999), no. 225, 307–320.

Wam1999b

P. van Wamelen, Pari-GP code, section “thecubic” https://www.math.lsu.edu/~wamelen/Genus2/FindCurve/igusa2curve.gp

Wan1998

Daqing Wan, “Dimension variation of classical and p-adic modular forms”, Invent. Math. 133, (1998) 449-463.

Wan2010

Zhenghan Wang. Topological quantum computation. Providence, RI: American Mathematical Society (AMS), 2010. ISBN 978-0-8218-4930-9

Was1997

L. C. Washington, Cyclotomic Fields, Springer-Verlag, GTM volume 83, 1997.

Watkins

Mark Watkins, Hypergeometric motives over Q and their L-functions, http://magma.maths.usyd.edu.au/~watkins/papers/known.pdf

Wat2003

Joel Watson. Strategy: an introduction to game theory. WW Norton, 2002.

Wat2010

Watkins, David S. Fundamentals of Matrix Computations, Third Edition. Wiley, Hoboken, New Jersey, 2010.

Web2007

James Webb. Game theory: decisions, interaction and Evolution. Springer Science & Business Media, 2007.

Weh1998

J. Wehler. Hypersurfaces of the Flag Variety: Deformation Theory and the Theorems of Kodaira-Spencer, Torelli, Lefschetz, M. Noether, and Serre. Math. Z. 198 (1988), 21-38.

WELLS

Elliot Wells. Computing the Canonical Height of a Point in Projective Space. arXiv 1602.04920v1 (2016).

Wei1994

Charles A. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Math., vol. 38, Cambridge Univ. Press, 1994.

Wel1988

Dominic Welsh, Codes and Cryptography. Oxford Sciences Publications, 1988

Wer1998

Annette Werner, Local heights on abelian varieties and rigid analytic uniformization, Doc. Math. 3 (1998), 301-319.

Wes2017

Bruce Westbury. Coboundary categories and local rules, The Electronic Journal of Combinatorics, 25 (2018)

WFYTP2008

D. Watanable, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, A new keystream generator MUGI; in FSE, (2002), pp. 179-194.

Whi1932

H. Whitney, Congruent graphs and the connectivity of graphs, American Journal of Mathematics, pages 150–168, 1932, available on JSTOR

Wich1997

Tim Wichmann. Der FGLM Algorithmus - verallgemeinert und implementiert in Singular Diploma Thesis (University of Kaiserslautern), 1997.

Wie2000

B. Wieland. A large dihedral symmetry of the set of alternating sign matrices. Electron. J. Combin. 7 (2000).

Wilson2008

Steve Wilson. Rose Window Graphs. Ars Mathematica Contemporanea 1(1):7-19, 2008. doi:10.26493/1855-3974.13.5bb

Wilson2016

A. T. Wilson. An extension of MacMahon’s Equidistribution Theorem to ordered multiset partitions. Electron. J. Combin., 23 (1) (2016).

Wil2010

M. Willis. A direct way to find the right key of a semistandard Young tableau. arXiv 1110.6184v1.

Wil2013

Harold Williams. Q-systems, factorization dynamics, and the twist automorphism. Int. Math. Res. Not. (2015) no. 22, 12042–12069. doi:10.1093/imrn/rnv057.

Wol1974

W. A. Wolovich. “Linear Multivariable Systems”, Applied Mathematical Sciences (volume 11). Springer-Verlag New-York, 1974. doi:10.1007/978-1-4612-6392-0

Woo1998

R. M. W. Wood, “Problems in the Steenrod algebra,” Bull. London Math. Soc. 30 (1998), no. 5, 449-517.

Wor1984

Worley, Dale Raymond, A theory of shifted Young tableaux. Dissertation, Massachusetts Institute of Technology, 1984.

WPNBBAtl

R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, T. Breuer, AtlasRep, a GAP interface to the atlas of group representations. http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

WP-Bessel

Wikipedia article Bessel_function

WP-Error

Wikipedia article Error_function

WP-Struve

Wikipedia article Struve_function

WROM1986

Wright, Robert Alan; Richmond, Bruce; Odlyzko, Andrew; McKay, Brendan D. Constant time generation of free trees. SIAM J. Comput. 15 (1986), no. 2, 540–548. doi:10.1137/0215039.

WSK1997

D. Wagner, B. Schneier, and J. Kelsey, Cryptoanalysis of the cellular encryption algorithm; in CRYPTO, (1997), pp. 526-537.

Wu2009

Hongjun Wu, The Hash Function JH; submitted to NIST, (2008), available at http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

Wu2004

Wuthrich, Christian. On p-adic heights in families of elliptic curves. Journal of the London Mathematical Society, 70(1), 23-40, (2004).

Wu2018

Wuthrich, Christian. Numerical modular symbols for elliptic curves. Math. Comp. 87 (2018), no. 313, 2393–2423.

WW1972

J. Wallis and A.L. Whiteman, Some classes of Hadamard matrices with constant diagonal, Bull. Austral. Math. Soc. 7(1972), 233-249

WW1991

Michelle Wachs and Dennis White, p, q-Stirling numbers and set partition statistics, Journal of Combinatorial Theory, Series A 56.1 (1991): 27-46.

WW2005

Ralf-Philipp Weinmann and Kai Wirt, Analysis of the DVB Common Scrambling Algorithm; in IFIP TC-6 TC-11, (2005).

WZ2011

W. Wu and L. Zhang, The LBlock family of block ciphers; in ACNS, (2011), pp. 327-344.

WZY2015

Wenling Wu, Lei Zhang, and Xiaoli Yu, The DBlock family of block ciphers; in Science China Information Sciences, (2015), pp. 1-14.

X

XP1994

Deng Xiaotie, and Christos Papadimitriou. On the complexity of cooperative solution concepts. Mathematics of Operations Research 19.2 (1994): 257-266.

Y

Yamada2007

Daisuke Yamada. Scattering rule in soliton cellular automaton associated with crystal base of \(U_q(D_4^{(3)})\). J. Math. Phys., 48 (4):043509, 28, (2007).

Yen1970

Yen, Jin Y. (1970). An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Quarterly of Applied Mathematics. 27 (4): 526–530. doi:10.1090/qam/253822

Yoc2005

Jean-Christophe Yoccoz “Echange d’Intervalles”, Cours au collège de France

Yip2018

Yip, Martha. “Rook placements and Jordan forms of upper-triangular nilpotent matrices.” Electronic J. Comb. 25(1) (2018) #P1.68. arXiv 1703.00057.

Yu2007

K. Yu, p-adic logarithmic forms and group varieties. III. Forum Math., 19(2):187–280, 2007.

Yun1976

Yun, David YY. On square-free decomposition algorithms. In Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26-35. ACM, 1976.

Yuz1993

Sergey Yuzvinsky, “The first two obstructions to the freeness of arrangements”, Transactions of the American Mathematical Society, Vol. 335, 1 (1993) pp. 231–244.

YWHWXSW2014

D. Ye, P. Wang, L. Hu, L. Wang, Y. Xie, S. Sun, and P. Wang, Panda v1; in CAESAR Competition, (2014).

YT2002

F. Yura and T. Tokihiro, On a periodic soliton cellular automaton, J. Phys. A: Math. Gen. 35 (2002) 3787-3801.

YYT2003

D. Yoshihara, F. Yura, and T. Tokihiro, Fundamental cycle of a periodic box-ball system, J. Phys. A: Math. Gen. 36 (2003) 99-121.

Z

ZBLRYV2015

W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede, RECTANGLE: A bit-slice lightweight block cipher suitable for multiple platforms; in Science China Information Sciences, (2015), pp. 1-15.

ZBN1997

C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp.550–560, 1997.

ZDYBXJZ2019

W. Zhang, T. Ding, B. Yang, Z. Bao, Z. Xiang, F. Ji, X. Zhao. KNOT: Algorithm Specifications and Supporting Document https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/KNOT-spec.pdf

Zei2011

Doron Zeilberger. The C-finite ansatz. The Ramanujan Journal (2011): 1-10. doi:10.1007/s11139-012-9406-6

Zha2019

Bin Zhang. Fountain: A Lightweight Authenticated Cipher (v1) https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/fountain-spec.pdf

Zhedanov1991

A.S. Zhedanov. “Hidden symmetry” of the Askey–Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146–1157. doi:10.1007/BF01015906

ZF2012

Jin-Xin Zhou and Yan-Quan Feng. Cubic Vertex-Transitive Non-Cayley Graphs of Order 8p. The Electronic Journal of Combinatorics, 19(1), P53, 2012. doi:10.37236/2087

Zie1998

G. M. Ziegler. Shelling polyhedral 3-balls and 4-polytopes. Discrete Comput. Geom. 19 (1998), 159-174. doi:10.1007/PL00009339

Zie2007

G. M. Ziegler. Lectures on polytopes, Volume 152 of Graduate Texts in Mathematics, 7th printing of 1st edition, Springer, 2007.

ZJRRS2019

M. R. Z’aba, N. Jamil, M. S. Rohmad, H. A. Rani, S. Shamsuddin The CiliPadi Family of Lightweight Authenticated Encryption https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/cilipadi-spec.pdf

Zor2008

A. Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials, Journal of Modern Dynamics, vol. 2, no 1, 139-185 (2008) (http://www.math.psu.edu/jmd) doi:10.3934/jmd.2008.2.139

Zor

Anton Zorich, “Generalized Permutation software” (http://perso.univ-rennes1.fr/anton.zorich)

ZZ2005

Hechun Zhang and R. B. Zhang. Dual canonical bases for the quantum special linear group and invariant subalgebras. Lett. Math. Phys. 73 (2005), pp. 165-181. arXiv math/0509651, doi:10.1007/s11005-005-0015-9

Indices and Tables