Space of homomorphisms between two rings¶
- sage.rings.homset.RingHomset(R, S, category=None)¶
Construct a space of homomorphisms between the rings
R
andS
.For more on homsets, see
Hom()
.EXAMPLES:
sage: Hom(ZZ, QQ) # indirect doctest Set of Homomorphisms from Integer Ring to Rational Field
- class sage.rings.homset.RingHomset_generic(R, S, category=None)¶
Bases:
sage.categories.homset.HomsetWithBase
A generic space of homomorphisms between two rings.
EXAMPLES:
sage: Hom(ZZ, QQ) Set of Homomorphisms from Integer Ring to Rational Field sage: QQ.Hom(ZZ) Set of Homomorphisms from Rational Field to Integer Ring
- Element¶
alias of
sage.rings.morphism.RingHomomorphism
- has_coerce_map_from(x)¶
The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementation work is done).
Currently this checks if the domains and the codomains are equal.
EXAMPLES:
sage: H = Hom(ZZ, QQ) sage: H2 = Hom(QQ, ZZ) sage: H.has_coerce_map_from(H2) False
- natural_map()¶
Returns the natural map from the domain to the codomain.
The natural map is the coercion map from the domain ring to the codomain ring.
EXAMPLES:
sage: H = Hom(ZZ, QQ) sage: H.natural_map() Natural morphism: From: Integer Ring To: Rational Field
- zero()¶
Return the zero element of this homset.
EXAMPLES:
Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:
sage: Hom(ZZ, Zmod(1)).zero() Ring morphism: From: Integer Ring To: Ring of integers modulo 1 Defn: 1 |--> 0 sage: Hom(ZZ, Zmod(2)).zero() Traceback (most recent call last): ... ValueError: homset has no zero element
- class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)¶
Bases:
sage.rings.homset.RingHomset_generic
Space of ring homomorphisms where the domain is a (formal) quotient ring.
EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, 2) sage: S.<a,b> = R.quotient(x^2 + y^2) sage: phi = S.hom([b,a]); phi Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2) Defn: a |--> b b |--> a sage: phi(a) b sage: phi(b) a
- Element¶
- sage.rings.homset.is_RingHomset(H)¶
Return
True
ifH
is a space of homomorphisms between two rings.EXAMPLES:
sage: from sage.rings.homset import is_RingHomset as is_RH sage: is_RH(Hom(ZZ, QQ)) True sage: is_RH(ZZ) False sage: is_RH(Hom(RR, CC)) True sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1))) False