Arbitrary precision real balls using Arb¶
This is a binding to the Arb library for ball arithmetic. It may be useful to refer to its documentation for more details.
Parts of the documentation for this module are copied or adapted from Arb’s own documentation, licenced under the GNU General Public License version 2, or later.
Data Structure¶
Ball arithmetic, also known as mid-rad interval arithmetic, is an extension of floating-point arithmetic in which an error bound is attached to each variable. This allows doing rigorous computations over the real numbers, while avoiding the overhead of traditional (inf-sup) interval arithmetic at high precision, and eliminating much of the need for time-consuming and bug-prone manual error analysis associated with standard floating-point arithmetic.
Sage RealBall
objects wrap Arb objects of type arb_t
. A real
ball represents a ball over the real numbers, that is, an interval \([m-r,m+r]\)
where the midpoint \(m\) and the radius \(r\) are (extended) real numbers:
sage: RBF(pi)
[3.141592653589793 +/- ...e-16]
sage: RBF(pi).mid(), RBF(pi).rad()
(3.14159265358979, ...e-16)
The midpoint is represented as an arbitrary-precision floating-point number with arbitrary-precision exponent. The radius is a floating-point number with fixed-precision mantissa and arbitrary-precision exponent.
sage: RBF(2)^(2^100)
[2.285367694229514e+381600854690147056244358827360 +/- ...e+381600854690147056244358827344]
RealBallField
objects (the parents of real balls) model the field of
real numbers represented by balls on which computations are carried out with a
certain precision:
sage: RBF
Real ball field with 53 bits of precision
It is possible to construct a ball whose parent is the real ball field with precision \(p\) but whose midpoint does not fit on \(p\) bits. However, the results of operations involving such a ball will (usually) be rounded to its parent’s precision:
sage: RBF(factorial(50)).mid(), RBF(factorial(50)).rad()
(3.0414093201713378043612608166064768844377641568961e64, 0.00000000)
sage: (RBF(factorial(50)) + 0).mid()
3.04140932017134e64
Comparison¶
Warning
In accordance with the semantics of Arb, identical RealBall
objects are understood to give permission for algebraic simplification.
This assumption is made to improve performance. For example, setting z =
x*x
may set \(z\) to a ball enclosing the set \(\{t^2 : t \in x\}\) and not
the (generally larger) set \(\{tu : t \in x, u \in x\}\).
Two elements are equal if and only if they are exact and equal (in spite of the above warning, inexact balls are not considered equal to themselves):
sage: a = RBF(1)
sage: b = RBF(1)
sage: a is b
False
sage: a == a
True
sage: a == b
True
sage: a = RBF(1/3)
sage: b = RBF(1/3)
sage: a.is_exact()
False
sage: b.is_exact()
False
sage: a is b
False
sage: a == a
False
sage: a == b
False
A ball is non-zero in the sense of comparison if and only if it does not contain zero.
sage: a = RBF(RIF(-0.5, 0.5))
sage: a != 0
False
sage: b = RBF(1/3)
sage: b != 0
True
However, bool(b)
returns False
for a ball b
only if b
is exactly
zero:
sage: bool(a)
True
sage: bool(b)
True
sage: bool(RBF.zero())
False
A ball left
is less than a ball right
if all elements of
left
are less than all elements of right
.
sage: a = RBF(RIF(1, 2))
sage: b = RBF(RIF(3, 4))
sage: a < b
True
sage: a <= b
True
sage: a > b
False
sage: a >= b
False
sage: a = RBF(RIF(1, 3))
sage: b = RBF(RIF(2, 4))
sage: a < b
False
sage: a <= b
False
sage: a > b
False
sage: a >= b
False
Comparisons with Sage symbolic infinities work with some limitations:
sage: -infinity < RBF(1) < +infinity
True
sage: -infinity < RBF(infinity)
True
sage: RBF(infinity) < infinity
False
sage: RBF(NaN) < infinity
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
sage: 1/RBF(0) <= infinity
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
Comparisons between elements of real ball fields, however, support special values and should be preferred:
sage: RBF(NaN) < RBF(infinity)
False
sage: RBF(0).add_error(infinity) <= RBF(infinity)
True
Classes and Methods¶
- sage.rings.real_arb.RBF = Real ball field with 53 bits of precision¶
- class sage.rings.real_arb.RealBall¶
Bases:
sage.structure.element.RingElement
Hold one
arb_t
of the Arb libraryEXAMPLES:
sage: a = RealBallField()(RIF(1)) # indirect doctest sage: b = a.psi() sage: b [-0.577215664901533 +/- ...e-16] sage: RIF(b) -0.577215664901533?
- above_abs()¶
Return an upper bound for the absolute value of this ball.
OUTPUT:
A ball with zero radius
EXAMPLES:
sage: b = RealBallField(8)(1/3).above_abs() sage: b [0.33 +/- ...e-3] sage: b.is_exact() True sage: QQ(b) 171/512
See also
- accuracy()¶
Return the effective relative accuracy of this ball measured in bits.
The accuracy is defined as the difference between the position of the top bit in the midpoint and the top bit in the radius, minus one. The result is clamped between plus/minus
maximal_accuracy()
.EXAMPLES:
sage: RBF(pi).accuracy() 52 sage: RBF(1).accuracy() == RBF.maximal_accuracy() True sage: RBF(NaN).accuracy() == -RBF.maximal_accuracy() True
See also
- add_error(ampl)¶
Increase the radius of this ball by (an upper bound on)
ampl
.If
ampl
is negative, the radius is unchanged.INPUT:
ampl
– A real ball (or an object that can be coerced to a real ball).
OUTPUT:
A new real ball.
EXAMPLES:
sage: err = RBF(10^-16) sage: RBF(1).add_error(err) [1.000000000000000 +/- ...e-16]
- agm(other)¶
Return the arithmetic-geometric mean of
self
andother
.EXAMPLES:
sage: RBF(1).agm(1) 1.000000000000000 sage: RBF(sqrt(2)).agm(1)^(-1) [0.8346268416740...]
- arccos()¶
Return the arccosine of this ball.
EXAMPLES:
sage: RBF(1).arccos() 0 sage: RBF(1, rad=.125r).arccos() nan
- arccosh()¶
Return the inverse hyperbolic cosine of this ball.
EXAMPLES:
sage: RBF(2).arccosh() [1.316957896924817 +/- ...e-16] sage: RBF(1).arccosh() 0 sage: RBF(0).arccosh() nan
- arcsin()¶
Return the arcsine of this ball.
EXAMPLES:
sage: RBF(1).arcsin() [1.570796326794897 +/- ...e-16] sage: RBF(1, rad=.125r).arcsin() nan
- arcsinh()¶
Return the inverse hyperbolic sine of this ball.
EXAMPLES:
sage: RBF(1).arcsinh() [0.881373587019543 +/- ...e-16] sage: RBF(0).arcsinh() 0
- arctan()¶
Return the arctangent of this ball.
EXAMPLES:
sage: RBF(1).arctan() [0.7853981633974483 +/- ...e-17]
- arctanh()¶
Return the inverse hyperbolic tangent of this ball.
EXAMPLES:
sage: RBF(0).arctanh() 0 sage: RBF(1/2).arctanh() [0.549306144334055 +/- ...e-16] sage: RBF(1).arctanh() nan
- below_abs(test_zero=False)¶
Return a lower bound for the absolute value of this ball.
INPUT:
test_zero
(boolean, defaultFalse
) – ifTrue
, make sure that the returned lower bound is positive, raising an error if the ball contains zero.
OUTPUT:
A ball with zero radius
EXAMPLES:
sage: RealBallField(8)(1/3).below_abs() [0.33 +/- ...e-5] sage: b = RealBallField(8)(1/3).below_abs() sage: b [0.33 +/- ...e-5] sage: b.is_exact() True sage: QQ(b) 169/512 sage: RBF(0).below_abs() 0 sage: RBF(0).below_abs(test_zero=True) Traceback (most recent call last): ... ValueError: ball contains zero
See also
- ceil()¶
Return the ceil of this ball.
EXAMPLES:
sage: RBF(1000+1/3, rad=1.r).ceil() [1.00e+3 +/- 2.01]
- center()¶
Return the center of this ball.
EXAMPLES:
sage: RealBallField(16)(1/3).mid() 0.3333 sage: RealBallField(16)(1/3).mid().parent() Real Field with 16 bits of precision sage: RealBallField(16)(RBF(1/3)).mid().parent() Real Field with 53 bits of precision sage: RBF('inf').mid() +infinity
sage: b = RBF(2)^(2^1000) sage: b.mid() # arb216 Traceback (most recent call last): ... RuntimeError: unable to convert to MPFR (exponent out of range?) sage: b.mid() # arb218 +infinity
- chebyshev_T(n)¶
Evaluate the Chebyshev polynomial of the first kind
T_n
at this ball.EXAMPLES:
sage: RBF(pi).chebyshev_T(0) 1.000000000000000 sage: RBF(pi).chebyshev_T(1) [3.141592653589793 +/- ...e-16] sage: RBF(pi).chebyshev_T(10**20) Traceback (most recent call last): ... ValueError: index too large sage: RBF(pi).chebyshev_T(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
- chebyshev_U(n)¶
Evaluate the Chebyshev polynomial of the second kind
U_n
at this ball.EXAMPLES:
sage: RBF(pi).chebyshev_U(0) 1.000000000000000 sage: RBF(pi).chebyshev_U(1) [6.283185307179586 +/- ...e-16] sage: RBF(pi).chebyshev_U(10**20) Traceback (most recent call last): ... ValueError: index too large sage: RBF(pi).chebyshev_U(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
- contains_exact(other)¶
Return
True
iff the given number (or ball)other
is contained in the interval represented byself
.If
self
contains NaN, this function always returnsTrue
(as it could represent anything, and in particular could represent all the points included inother
). Ifother
contains NaN andself
does not, it always returnsFalse
.Use
other in self
for a test that works for a wider range of inputs but may return false negatives.EXAMPLES:
sage: b = RBF(1) sage: b.contains_exact(1) True sage: b.contains_exact(QQ(1)) True sage: b.contains_exact(1.) True sage: b.contains_exact(b) True
sage: RBF(1/3).contains_exact(1/3) True sage: RBF(sqrt(2)).contains_exact(sqrt(2)) Traceback (most recent call last): ... TypeError: unsupported type: <type 'sage.symbolic.expression.Expression'>
- contains_integer()¶
Return
True
iff this ball contains any integer.EXAMPLES:
sage: RBF(3.1, 0.1).contains_integer() True sage: RBF(3.1, 0.05).contains_integer() False
- contains_zero()¶
Return
True
iff this ball contains zero.EXAMPLES:
sage: RBF(0).contains_zero() True sage: RBF(RIF(-1, 1)).contains_zero() True sage: RBF(1/3).contains_zero() False
- cos()¶
Return the cosine of this ball.
EXAMPLES:
sage: RBF(pi).cos() [-1.00000000000000 +/- ...e-16]
See also
- cosh()¶
Return the hyperbolic cosine of this ball.
EXAMPLES:
sage: RBF(1).cosh() [1.543080634815244 +/- ...e-16]
- cot()¶
Return the cotangent of this ball.
EXAMPLES:
sage: RBF(1).cot() [0.642092615934331 +/- ...e-16] sage: RBF(pi).cot() nan
- coth()¶
Return the hyperbolic cotangent of this ball.
EXAMPLES:
sage: RBF(1).coth() [1.313035285499331 +/- ...e-16] sage: RBF(0).coth() nan
- csc()¶
Return the cosecant of this ball.
EXAMPLES:
sage: RBF(1).csc() [1.188395105778121 +/- ...e-16]
- csch()¶
Return the hyperbolic cosecant of this ball.
EXAMPLES:
sage: RBF(1).csch() [0.850918128239321 +/- ...e-16]
- diameter()¶
Return the diameter of this ball.
EXAMPLES:
sage: RBF(1/3).diameter() 1.1102230e-16 sage: RBF(1/3).diameter().parent() Real Field with 30 bits of precision sage: RBF(RIF(1.02, 1.04)).diameter() 0.020000000
See also
- endpoints(rnd=None)¶
Return the endpoints of this ball, rounded outwards.
INPUT:
rnd
(string) – rounding mode for the parent of the resulting floating-point numbers (does not affect their values!), seesage.rings.real_mpfi.RealIntervalFieldElement.upper()
OUTPUT:
A pair of real numbers.
EXAMPLES:
sage: RBF(-1/3).endpoints() (-0.333333333333334, -0.333333333333333)
- erf()¶
Error function.
EXAMPLES:
sage: RBF(1/2).erf() [0.520499877813047 +/- 6.10e-16]
- exp()¶
Return the exponential of this ball.
EXAMPLES:
sage: RBF(1).exp() [2.718281828459045 +/- ...e-16]
- expm1()¶
Return
exp(self) - 1
, computed accurately whenself
is close to zero.EXAMPLES:
sage: eps = RBF(1e-30) sage: exp(eps) - 1 [+/- ...e-30] sage: eps.expm1() [1.000000000000000e-30 +/- ...e-47]
- floor()¶
Return the floor of this ball.
EXAMPLES:
sage: RBF(1000+1/3, rad=1.r).floor() [1.00e+3 +/- 1.01]
- gamma()¶
Return the image of this ball by the Euler Gamma function.
For integer and rational arguments,
gamma()
may be faster.EXAMPLES:
sage: RBF(1/2).gamma() [1.772453850905516 +/- ...e-16]
See also
- identical(other)¶
Return True iff
self
andother
are equal as balls, i.e. have both the same midpoint and radius.Note that this is not the same thing as testing whether both
self
andother
certainly represent the same real number, unless eitherself
orother
is exact (and neither contains NaN). To test whether both operands might represent the same mathematical quantity, useoverlaps()
orcontains()
, depending on the circumstance.EXAMPLES:
sage: RBF(1).identical(RBF(3)-RBF(2)) True sage: RBF(1, rad=0.25r).identical(RBF(1, rad=0.25r)) True sage: RBF(1).identical(RBF(1, rad=0.25r)) False
- imag()¶
Return the imaginary part of this ball.
EXAMPLES:
sage: RBF(1/3).imag() 0
- is_NaN()¶
Return
True
if this ball is not-a-number.EXAMPLES:
sage: RBF(NaN).is_NaN() True sage: RBF(-5).gamma().is_NaN() True sage: RBF(infinity).is_NaN() False sage: RBF(42, rad=1.r).is_NaN() False
- is_exact()¶
Return
True
iff the radius of this ball is zero.EXAMPLES:
sage: RBF = RealBallField() sage: RBF(1).is_exact() True sage: RBF(RIF(0.1, 0.2)).is_exact() False
- is_finite()¶
Return True iff the midpoint and radius of this ball are both finite floating-point numbers, i.e. not infinities or NaN.
EXAMPLES:
sage: (RBF(2)^(2^1000)).is_finite() True sage: RBF(oo).is_finite() False
- is_infinity()¶
Return
True
if this ball contains or may represent a point at infinity.This is the exact negation of
is_finite()
, used in comparisons with Sage symbolic infinities.Warning
Contrary to the usual convention, a return value of True does not imply that all points of the ball satisfy the predicate. This is due to the way comparisons with symbolic infinities work in sage.
EXAMPLES:
sage: RBF(infinity).is_infinity() True sage: RBF(-infinity).is_infinity() True sage: RBF(NaN).is_infinity() True sage: (~RBF(0)).is_infinity() True sage: RBF(42, rad=1.r).is_infinity() False
- is_negative_infinity()¶
Return
True
if this ball is the point -∞.EXAMPLES:
sage: RBF(-infinity).is_negative_infinity() True
- is_nonzero()¶
Return
True
iff zero is not contained in the interval represented by this ball.Note
This method is not the negation of
is_zero()
: it only returnsTrue
if zero is known not to be contained in the ball.Use
bool(b)
(or, equivalently,not b.is_zero()
) to check if a ballb
may represent a nonzero number (for instance, to determine the “degree” of a polynomial with ball coefficients).EXAMPLES:
sage: RBF = RealBallField() sage: RBF(pi).is_nonzero() True sage: RBF(RIF(-0.5, 0.5)).is_nonzero() False
See also
- is_positive_infinity()¶
Return
True
if this ball is the point +∞.EXAMPLES:
sage: RBF(infinity).is_positive_infinity() True
- is_zero()¶
Return
True
iff the midpoint and radius of this ball are both zero.EXAMPLES:
sage: RBF = RealBallField() sage: RBF(0).is_zero() True sage: RBF(RIF(-0.5, 0.5)).is_zero() False
See also
- lambert_w()¶
Return the image of this ball by the Lambert W function.
EXAMPLES:
sage: RBF(1).lambert_w() [0.5671432904097...]
- log(base=None)¶
Return the logarithm of this ball.
INPUT:
base
(optional, positive real ball or number) – ifNone
, return the natural logarithmln(self)
, otherwise, return the general logarithmln(self)/ln(base)
EXAMPLES:
sage: RBF(3).log() [1.098612288668110 +/- ...e-16] sage: RBF(3).log(2) [1.58496250072116 +/- ...e-15] sage: log(RBF(5), 2) [2.32192809488736 +/- ...e-15] sage: RBF(-1/3).log() nan sage: RBF(3).log(-1) nan sage: RBF(2).log(0) nan
- log1p()¶
Return
log(1 + self)
, computed accurately whenself
is close to zero.EXAMPLES:
sage: eps = RBF(1e-30) sage: (1 + eps).log() [+/- ...e-16] sage: eps.log1p() [1.00000000000000e-30 +/- ...e-46]
- log_gamma()¶
Return the image of this ball by the logarithmic Gamma function.
The complex branch structure is assumed, so if
self
<= 0, the result is an indeterminate interval.EXAMPLES:
sage: RBF(1/2).log_gamma() [0.572364942924700 +/- ...e-16]
- lower(rnd=None)¶
Return the right endpoint of this ball, rounded downwards.
INPUT:
rnd
(string) – rounding mode for the parent of the result (does not affect its value!), seesage.rings.real_mpfi.RealIntervalFieldElement.lower()
OUTPUT:
A real number.
EXAMPLES:
sage: RBF(-1/3).lower() -0.333333333333334 sage: RBF(-1/3).lower().parent() Real Field with 53 bits of precision and rounding RNDD
See also
- max(*others)¶
Return a ball containing the maximum of this ball and the remaining arguments.
EXAMPLES:
sage: RBF(-1, rad=.5).max(0) 0 sage: RBF(0, rad=2.).max(RBF(0, rad=1.)).endpoints() (-1.00000000465662, 2.00000000651926) sage: RBF(-infinity).max(-3, 1/3) [0.3333333333333333 +/- ...e-17] sage: RBF('nan').max(0) nan
See also
- mid()¶
Return the center of this ball.
EXAMPLES:
sage: RealBallField(16)(1/3).mid() 0.3333 sage: RealBallField(16)(1/3).mid().parent() Real Field with 16 bits of precision sage: RealBallField(16)(RBF(1/3)).mid().parent() Real Field with 53 bits of precision sage: RBF('inf').mid() +infinity
sage: b = RBF(2)^(2^1000) sage: b.mid() # arb216 Traceback (most recent call last): ... RuntimeError: unable to convert to MPFR (exponent out of range?) sage: b.mid() # arb218 +infinity
- min(*others)¶
Return a ball containing the minimum of this ball and the remaining arguments.
EXAMPLES:
sage: RBF(1, rad=.5).min(0) 0 sage: RBF(0, rad=2.).min(RBF(0, rad=1.)).endpoints() (-2.00000000651926, 1.00000000465662) sage: RBF(infinity).min(3, 1/3) [0.3333333333333333 +/- ...e-17] sage: RBF('nan').min(0) nan
See also
- nbits()¶
Return the minimum precision sufficient to represent this ball exactly.
In other words, return the number of bits needed to represent the absolute value of the mantissa of the midpoint of this ball. The result is 0 if the midpoint is a special value.
EXAMPLES:
sage: RBF(1/3).nbits() 53 sage: RBF(1023, .1).nbits() 10 sage: RBF(1024, .1).nbits() 1 sage: RBF(0).nbits() 0 sage: RBF(infinity).nbits() 0
- overlaps(other)¶
Return True iff
self
andother
have some point in common.If either
self
orother
contains NaN, this method always returns nonzero (as a NaN could be anything, it could in particular contain any number that is included in the other operand).EXAMPLES:
sage: RBF(pi).overlaps(RBF(pi) + 2**(-100)) True sage: RBF(pi).overlaps(RBF(3)) False
- polylog(s)¶
Return the polylogarithm \(\operatorname{Li}_s(\mathrm{self})\).
EXAMPLES:
sage: polylog(0, -1) -1/2 sage: RBF(-1).polylog(0) [-0.50000000000000 +/- ...e-16] sage: polylog(1, 1/2) -log(1/2) sage: RBF(1/2).polylog(1) [0.69314718055995 +/- ...e-15] sage: RBF(1/3).polylog(1/2) [0.44210883528067 +/- 6.7...e-15] sage: RBF(1/3).polylog(RLF(pi)) [0.34728895057225 +/- ...e-15]
- psi()¶
Compute the digamma function with argument self.
EXAMPLES:
sage: RBF(1).psi() [-0.577215664901533 +/- ...e-16]
- rad()¶
Return the radius of this ball.
EXAMPLES:
sage: RBF(1/3).rad() 5.5511151e-17 sage: RBF(1/3).rad().parent() Real Field with 30 bits of precision
See also
- rad_as_ball()¶
Return an exact ball with center equal to the radius of this ball.
EXAMPLES:
sage: rad = RBF(1/3).rad_as_ball() sage: rad [5.55111512e-17 +/- ...e-26] sage: rad.is_exact() True sage: rad.parent() Real ball field with 30 bits of precision
- real()¶
Return the real part of this ball.
EXAMPLES:
sage: RBF(1/3).real() [0.3333333333333333 +/- 7.04e-17]
- rgamma()¶
Return the image of this ball by the function 1/Γ, avoiding division by zero at the poles of the gamma function.
EXAMPLES:
sage: RBF(-1).rgamma() 0 sage: RBF(3).rgamma() 0.5000000000000000
- rising_factorial(n)¶
Return the
n
-th rising factorial of this ball.The \(n\)-th rising factorial of \(x\) is equal to \(x (x+1) \cdots (x+n-1)\).
For real \(n\), it is a quotient of gamma functions.
EXAMPLES:
sage: RBF(1).rising_factorial(5) 120.0000000000000 sage: RBF(1/2).rising_factorial(1/3) [0.63684988431797 +/- ...e-15]
- round()¶
Return a copy of this ball with center rounded to the precision of the parent.
EXAMPLES:
It is possible to create balls whose midpoint is more precise that their parent’s nominal precision (see
real_arb
for more information):sage: b = RBF(pi.n(100)) sage: b.mid() 3.141592653589793238462643383
The
round()
method rounds such a ball to its parent’s precision:sage: b.round().mid() 3.14159265358979
See also
- rsqrt()¶
Return the reciprocal square root of
self
.At high precision, this is faster than computing a square root.
EXAMPLES:
sage: RBF(2).rsqrt() [0.707106781186547 +/- ...e-16] sage: RBF(0).rsqrt() nan
- sec()¶
Return the secant of this ball.
EXAMPLES:
sage: RBF(1).sec() [1.850815717680925 +/- ...e-16]
- sech()¶
Return the hyperbolic secant of this ball.
EXAMPLES:
sage: RBF(1).sech() [0.648054273663885 +/- ...e-16]
- sinh()¶
Return the hyperbolic sine of this ball.
EXAMPLES:
sage: RBF(1).sinh() [1.175201193643801 +/- ...e-16]
- sqrt()¶
Return the square root of this ball.
EXAMPLES:
sage: RBF(2).sqrt() [1.414213562373095 +/- ...e-16] sage: RBF(-1/3).sqrt() nan
- sqrt1pm1()¶
Return \(\sqrt{1+\mathrm{self}}-1\), computed accurately when
self
is close to zero.EXAMPLES:
sage: eps = RBF(10^(-20)) sage: (1 + eps).sqrt() - 1 [+/- ...e-16] sage: eps.sqrt1pm1() [5.00000000000000e-21 +/- ...e-36]
- sqrtpos()¶
Return the square root of this ball, assuming that it represents a nonnegative number.
Any negative numbers in the input interval are discarded.
EXAMPLES:
sage: RBF(2).sqrtpos() [1.414213562373095 +/- ...e-16] sage: RBF(-1/3).sqrtpos() 0 sage: RBF(0, rad=2.r).sqrtpos() [+/- 1.42]
- squash()¶
Return an exact ball with the same center as this ball.
EXAMPLES:
sage: mid = RealBallField(16)(1/3).squash() sage: mid [0.3333 +/- ...e-5] sage: mid.is_exact() True sage: mid.parent() Real ball field with 16 bits of precision
See also
- tan()¶
Return the tangent of this ball.
EXAMPLES:
sage: RBF(1).tan() [1.557407724654902 +/- ...e-16] sage: RBF(pi/2).tan() nan
- tanh()¶
Return the hyperbolic tangent of this ball.
EXAMPLES:
sage: RBF(1).tanh() [0.761594155955765 +/- ...e-16]
- trim()¶
Return a trimmed copy of this ball.
Round
self
to a number of bits equal to theaccuracy()
ofself
(as indicated by its radius), plus a few guard bits. The resulting ball is guaranteed to containself
, but is more economical ifself
has less than full accuracy.EXAMPLES:
sage: b = RBF(0.11111111111111, rad=.001) sage: b.mid() 0.111111111111110 sage: b.trim().mid() 0.111111104488373
See also
- union(other)¶
Return a ball containing the convex hull of
self
andother
.EXAMPLES:
sage: RBF(0).union(1).endpoints() (-9.31322574615479e-10, 1.00000000093133)
- upper(rnd=None)¶
Return the right endpoint of this ball, rounded upwards.
INPUT:
rnd
(string) – rounding mode for the parent of the result (does not affect its value!), seesage.rings.real_mpfi.RealIntervalFieldElement.upper()
OUTPUT:
A real number.
EXAMPLES:
sage: RBF(-1/3).upper() -0.333333333333333 sage: RBF(-1/3).upper().parent() Real Field with 53 bits of precision and rounding RNDU
See also
- zeta(a=None)¶
Return the image of this ball by the Hurwitz zeta function.
For
a = 1
(ora = None
), this computes the Riemann zeta function.Use
RealBallField.zeta()
to compute the Riemann zeta function of a small integer without first converting it to a real ball.EXAMPLES:
sage: RBF(-1).zeta() [-0.0833333333333333 +/- ...e-17] sage: RBF(-1).zeta(1) [-0.0833333333333333 +/- ...e-17] sage: RBF(-1).zeta(2) [-1.083333333333333 +/- ...e-16]
- zetaderiv(k)¶
Return the image of this ball by the k-th derivative of the Riemann zeta function.
For a more flexible interface, see the low-level method
_zeta_series
of polynomials with complex ball coefficients.EXAMPLES:
sage: RBF(1/2).zetaderiv(1) [-3.92264613920915...]
- class sage.rings.real_arb.RealBallField(precision=53)¶
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.rings.ring.Field
An approximation of the field of real numbers using mid-rad intervals, also known as balls.
INPUT:
precision
– an integer \(\ge 2\).
EXAMPLES:
sage: RBF = RealBallField() # indirect doctest sage: RBF(1) 1.000000000000000
sage: (1/2*RBF(1)) + AA(sqrt(2)) - 1 + polygen(QQ, 'x') x + [0.914213562373095 +/- ...e-16]
- algebraic_closure()¶
Return the complex ball field with the same precision.
EXAMPLES:
sage: from sage.rings.complex_arb import ComplexBallField sage: RBF.complex_field() Complex ball field with 53 bits of precision sage: RealBallField(3).algebraic_closure() Complex ball field with 3 bits of precision
- bell_number(n)¶
Return a ball enclosing the
n
-th Bell number.EXAMPLES:
sage: [RBF.bell_number(n) for n in range(7)] [1.000000000000000, 1.000000000000000, 2.000000000000000, 5.000000000000000, 15.00000000000000, 52.00000000000000, 203.0000000000000] sage: RBF.bell_number(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index sage: RBF.bell_number(10**20) [5.38270113176282e+1794956117137290721328 +/- ...e+1794956117137290721313]
- bernoulli(n)¶
Return a ball enclosing the
n
-th Bernoulli number.EXAMPLES:
sage: [RBF.bernoulli(n) for n in range(4)] [1.000000000000000, -0.5000000000000000, [0.1666666666666667 +/- ...e-17], 0] sage: RBF.bernoulli(2**20) [-1.823002872104961e+5020717 +/- ...e+5020701] sage: RBF.bernoulli(2**1000) Traceback (most recent call last): ... ValueError: argument too large
- catalan_constant()¶
Return a ball enclosing the Catalan constant.
EXAMPLES:
sage: RBF.catalan_constant() [0.915965594177219 +/- ...e-16] sage: RealBallField(128).catalan_constant() [0.91596559417721901505460351493238411077 +/- ...e-39]
- characteristic()¶
Real ball fields have characteristic zero.
EXAMPLES:
sage: RealBallField().characteristic() 0
- complex_field()¶
Return the complex ball field with the same precision.
EXAMPLES:
sage: from sage.rings.complex_arb import ComplexBallField sage: RBF.complex_field() Complex ball field with 53 bits of precision sage: RealBallField(3).algebraic_closure() Complex ball field with 3 bits of precision
- construction()¶
Return the construction of a real ball field as a completion of the rationals.
EXAMPLES:
sage: RBF = RealBallField(42) sage: functor, base = RBF.construction() sage: functor, base (Completion[+Infinity, prec=42], Rational Field) sage: functor(base) is RBF True
- cospi(x)¶
Return a ball enclosing \(\cos(\pi x)\).
This works even if
x
itself is not a ball, and may be faster or more accurate wherex
is a rational number.EXAMPLES:
sage: RBF.cospi(1) -1.000000000000000 sage: RBF.cospi(1/3) 0.5000000000000000
See also
- double_factorial(n)¶
Return a ball enclosing the
n
-th double factorial.EXAMPLES:
sage: [RBF.double_factorial(n) for n in range(7)] [1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 8.000000000000000, 15.00000000000000, 48.00000000000000] sage: RBF.double_factorial(2**20) [1.4483729903e+2928836 +/- ...e+2928825] sage: RBF.double_factorial(2**1000) Traceback (most recent call last): ... ValueError: argument too large sage: RBF.double_factorial(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
- euler_constant()¶
Return a ball enclosing the Euler constant.
EXAMPLES:
sage: RBF.euler_constant() [0.577215664901533 +/- ...e-16] sage: RealBallField(128).euler_constant() [0.57721566490153286060651209008240243104 +/- ...e-39]
- fibonacci(n)¶
Return a ball enclosing the
n
-th Fibonacci number.EXAMPLES:
sage: [RBF.fibonacci(n) for n in range(7)] [0, 1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 5.000000000000000, 8.000000000000000] sage: RBF.fibonacci(-2) -1.000000000000000 sage: RBF.fibonacci(10**20) [3.78202087472056e+20898764024997873376 +/- ...e+20898764024997873361]
- gamma(x)¶
Return a ball enclosing the gamma function of
x
.This works even if
x
itself is not a ball, and may be more efficient in the case wherex
is an integer or a rational number.EXAMPLES:
sage: RBF.gamma(5) 24.00000000000000 sage: RBF.gamma(10**20) [+/- ...e+1956570552410610660600] sage: RBF.gamma(1/3) [2.678938534707747 +/- ...e-16] sage: RBF.gamma(-5) nan
See also
- gens()¶
EXAMPLES:
sage: RBF.gens() (1.000000000000000,) sage: RBF.gens_dict() {'1.000000000000000': 1.000000000000000}
- is_exact()¶
Real ball fields are not exact.
EXAMPLES:
sage: RealBallField().is_exact() False
- log2()¶
Return a ball enclosing \(\log(2)\).
EXAMPLES:
sage: RBF.log2() [0.6931471805599453 +/- ...e-17] sage: RealBallField(128).log2() [0.69314718055994530941723212145817656807 +/- ...e-39]
- maximal_accuracy()¶
Return the relative accuracy of exact elements measured in bits.
OUTPUT:
An integer.
EXAMPLES:
sage: RBF.maximal_accuracy() 9223372036854775807 # 64-bit 2147483647 # 32-bit
See also
- pi()¶
Return a ball enclosing \(\pi\).
EXAMPLES:
sage: RBF.pi() [3.141592653589793 +/- ...e-16] sage: RealBallField(128).pi() [3.1415926535897932384626433832795028842 +/- ...e-38]
- precision()¶
Return the bit precision used for operations on elements of this field.
EXAMPLES:
sage: RealBallField().precision() 53
- sinpi(x)¶
Return a ball enclosing \(\sin(\pi x)\).
This works even if
x
itself is not a ball, and may be faster or more accurate wherex
is a rational number.EXAMPLES:
sage: RBF.sinpi(1) 0 sage: RBF.sinpi(1/3) [0.866025403784439 +/- ...e-16] sage: RBF.sinpi(1 + 2^(-100)) [-2.478279624546525e-30 +/- ...e-46]
See also
- some_elements()¶
Real ball fields contain exact balls, inexact balls, infinities, and more.
EXAMPLES:
sage: RBF.some_elements() [0, 1.000000000000000, [0.3333333333333333 +/- ...e-17], [-4.733045976388941e+363922934236666733021124 +/- ...e+363922934236666733021108], [+/- inf], [+/- inf], [+/- inf], nan]
- zeta(s)¶
Return a ball enclosing the Riemann zeta function of
s
.This works even if
s
itself is not a ball, and may be more efficient in the case wheres
is an integer.EXAMPLES:
sage: RBF.zeta(3) [1.202056903159594 +/- ...e-16] sage: RBF.zeta(1) nan sage: RBF.zeta(1/2) [-1.460354508809587 +/- ...e-16]
See also