Double Precision Real Numbers¶
EXAMPLES:
We create the real double vector space of dimension \(3\):
sage: V = RDF^3; V
Vector space of dimension 3 over Real Double Field
Notice that this space is unique:
sage: V is RDF^3
True
sage: V is FreeModule(RDF, 3)
True
sage: V is VectorSpace(RDF, 3)
True
Also, you can instantly create a space of large dimension:
sage: V = RDF^10000
- class sage.rings.real_double.RealDoubleElement¶
Bases:
sage.structure.element.FieldElement
An approximation to a real number using double precision floating point numbers. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true real numbers. This is due to the rounding errors inherent to finite precision calculations.
- NaN()¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
- abs()¶
Returns the absolute value of
self
.EXAMPLES:
sage: RDF(1e10).abs() 10000000000.0 sage: RDF(-1e10).abs() 10000000000.0
- acosh()¶
Return the hyperbolic inverse cosine of
self
.EXAMPLES:
sage: q = RDF.pi()/2 sage: i = q.cosh(); i 2.5091784786580567 sage: abs(i.acosh()-q) < 1e-15 True
- agm(other)¶
Return the arithmetic-geometric mean of
self
andother
. The arithmetic-geometric mean is the common limit of the sequences \(u_n\) and \(v_n\), where \(u_0\) isself
, \(v_0\) is other, \(u_{n+1}\) is the arithmetic mean of \(u_n\) and \(v_n\), and \(v_{n+1}\) is the geometric mean of \(u_n\) and \(v_n\). If any operand is negative, the return value isNaN
.EXAMPLES:
sage: a = RDF(1.5) sage: b = RDF(2.3) sage: a.agm(b) 1.8786484558146697
The arithmetic-geometric mean always lies between the geometric and arithmetic mean:
sage: sqrt(a*b) < a.agm(b) < (a+b)/2 True
- algdep(n)¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library
algdep
command.EXAMPLES:
sage: r = sqrt(RDF(2)); r 1.4142135623730951 sage: r.algebraic_dependency(5) x^2 - 2
- algebraic_dependency(n)¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library
algdep
command.EXAMPLES:
sage: r = sqrt(RDF(2)); r 1.4142135623730951 sage: r.algebraic_dependency(5) x^2 - 2
- arccos()¶
Return the inverse cosine of
self
.EXAMPLES:
sage: q = RDF.pi()/3 sage: i = q.cos() sage: i.arccos() == q True
- arcsin()¶
Return the inverse sine of
self
.EXAMPLES:
sage: q = RDF.pi()/5 sage: i = q.sin() sage: i.arcsin() == q True
- arcsinh()¶
Return the hyperbolic inverse sine of
self
.EXAMPLES:
sage: q = RDF.pi()/2 sage: i = q.sinh(); i 2.3012989023072947 sage: abs(i.arcsinh()-q) < 1e-15 True
- arctan()¶
Return the inverse tangent of
self
.EXAMPLES:
sage: q = RDF.pi()/5 sage: i = q.tan() sage: i.arctan() == q True
- arctanh()¶
Return the hyperbolic inverse tangent of
self
.EXAMPLES:
sage: q = RDF.pi()/2 sage: i = q.tanh(); i 0.9171523356672744 sage: i.arctanh() - q # rel tol 1 4.440892098500626e-16
- as_integer_ratio()¶
Return a coprime pair of integers
(a, b)
such thatself
equalsa / b
exactly.EXAMPLES:
sage: RDF(0).as_integer_ratio() (0, 1) sage: RDF(1/3).as_integer_ratio() (6004799503160661, 18014398509481984) sage: RDF(37/16).as_integer_ratio() (37, 16) sage: RDF(3^60).as_integer_ratio() (42391158275216203520420085760, 1)
- ceil()¶
Return the ceiling of
self
.EXAMPLES:
sage: RDF(2.99).ceil() 3 sage: RDF(2.00).ceil() 2 sage: RDF(-5/2).ceil() -2
- ceiling()¶
Return the ceiling of
self
.EXAMPLES:
sage: RDF(2.99).ceil() 3 sage: RDF(2.00).ceil() 2 sage: RDF(-5/2).ceil() -2
- conjugate()¶
Returns the complex conjugate of this real number, which is the real number itself.
EXAMPLES:
sage: RDF(4).conjugate() 4.0
- cos()¶
Return the cosine of
self
.EXAMPLES:
sage: t=RDF.pi()/2 sage: t.cos() 6.123233995736757e-17
- cosh()¶
Return the hyperbolic cosine of
self
.EXAMPLES:
sage: q = RDF.pi()/12 sage: q.cosh() 1.0344656400955106
- coth()¶
Return the hyperbolic cotangent of
self
.EXAMPLES:
sage: RDF(pi).coth() 1.003741873197321 sage: CDF(pi).coth() 1.0037418731973213
- csch()¶
Return the hyperbolic cosecant of
self
.EXAMPLES:
sage: RDF(pi).csch() 0.08658953753004694 sage: CDF(pi).csch() # rel tol 1e-15 0.08658953753004696
- cube_root()¶
Return the cubic root (defined over the real numbers) of
self
.EXAMPLES:
sage: r = RDF(125.0); r.cube_root() 5.000000000000001 sage: r = RDF(-119.0) sage: r.cube_root()^3 - r # rel tol 1 -1.4210854715202004e-14
- dilog()¶
Return the dilogarithm of
self
.This is defined by the series \(\sum_n x^n/n^2\) for \(|x| \le 1\). When the absolute value of
self
is greater than 1, the returned value is the real part of (the analytic continuation to \(\CC\) of) the dilogarithm ofself
.EXAMPLES:
sage: RDF(1).dilog() # rel tol 1.0e-13 1.6449340668482264 sage: RDF(2).dilog() # rel tol 1.0e-13 2.46740110027234
- erf()¶
Return the value of the error function on
self
.EXAMPLES:
sage: RDF(6).erf() 1.0
- exp()¶
Return \(e^\mathtt{self}\).
EXAMPLES:
sage: r = RDF(0.0) sage: r.exp() 1.0
sage: r = RDF('32.3') sage: a = r.exp(); a 106588847274864.47 sage: a.log() 32.3
sage: r = RDF('-32.3') sage: r.exp() 9.381844588498685e-15
sage: RDF(1000).exp() +infinity
- exp10()¶
Return \(10^\mathtt{self}\).
EXAMPLES:
sage: r = RDF(0.0) sage: r.exp10() 1.0
sage: r = RDF(32.0) sage: r.exp10() 1.0000000000000069e+32
sage: r = RDF(-32.3) sage: r.exp10() 5.011872336272702e-33
- exp2()¶
Return \(2^\mathtt{self}\).
EXAMPLES:
sage: r = RDF(0.0) sage: r.exp2() 1.0
sage: r = RDF(32.0) sage: r.exp2() 4294967295.9999967
sage: r = RDF(-32.3) sage: r.exp2() 1.8911724825302065e-10
- floor()¶
Return the floor of
self
.EXAMPLES:
sage: RDF(2.99).floor() 2 sage: RDF(2.00).floor() 2 sage: RDF(-5/2).floor() -3
- frac()¶
Return a real number in \((-1, 1)\). It satisfies the relation:
x = x.trunc() + x.frac()
EXAMPLES:
sage: RDF(2.99).frac() 0.9900000000000002 sage: RDF(2.50).frac() 0.5 sage: RDF(-2.79).frac() -0.79
- gamma()¶
Return the value of the Euler gamma function on
self
.EXAMPLES:
sage: RDF(6).gamma() 120.0 sage: RDF(1.5).gamma() # rel tol 1e-15 0.8862269254527584
- hypot(other)¶
Computes the value \(\sqrt{s^2 + o^2}\) where \(s\) is
self
and \(o\) isother
in such a way as to avoid overflow.EXAMPLES:
sage: x = RDF(4e300); y = RDF(3e300) sage: x.hypot(y) 5e+300 sage: sqrt(x^2+y^2) # overflow +infinity
- imag()¶
Return the imaginary part of this number, which is zero.
EXAMPLES:
sage: a = RDF(3) sage: a.imag() 0.0
- integer_part()¶
If in decimal this number is written
n.defg
, returnsn
.EXAMPLES:
sage: r = RDF('-1.6') sage: a = r.integer_part(); a -1 sage: type(a) <type 'sage.rings.integer.Integer'> sage: r = RDF(0.0/0.0) sage: a = r.integer_part() Traceback (most recent call last): ... TypeError: Attempt to get integer part of NaN
- is_NaN()¶
Check if
self
isNaN
.EXAMPLES:
sage: RDF(1).is_NaN() False sage: a = RDF(0)/RDF(0) sage: a.is_NaN() True
- is_infinity()¶
Check if
self
is \(\infty\).EXAMPLES:
sage: a = RDF(2); b = RDF(0) sage: (a/b).is_infinity() True sage: (b/a).is_infinity() False
- is_integer()¶
Return True if this number is a integer
EXAMPLES:
sage: RDF(3.5).is_integer() False sage: RDF(3).is_integer() True
- is_negative_infinity()¶
Check if
self
is \(-\infty\).EXAMPLES:
sage: a = RDF(2)/RDF(0) sage: a.is_negative_infinity() False sage: a = RDF(-3)/RDF(0) sage: a.is_negative_infinity() True
- is_positive_infinity()¶
Check if
self
is \(+\infty\).EXAMPLES:
sage: a = RDF(1)/RDF(0) sage: a.is_positive_infinity() True sage: a = RDF(-1)/RDF(0) sage: a.is_positive_infinity() False
- is_square()¶
Return whether or not this number is a square in this field. For the real numbers, this is
True
if and only ifself
is non-negative.EXAMPLES:
sage: RDF(3.5).is_square() True sage: RDF(0).is_square() True sage: RDF(-4).is_square() False
- log(base=None)¶
Return the logarithm.
INPUT:
base
– integer orNone
(default). The base of the logarithm. IfNone
is specified, the base is \(e\) (the so-called natural logarithm).
OUTPUT:
The logarithm of
self
. Ifself
is positive, a double floating point number. Infinity ifself
is zero. A imaginary complex floating point number ifself
is negative.EXAMPLES:
sage: RDF(2).log() 0.6931471805599453 sage: RDF(2).log(2) 1.0 sage: RDF(2).log(pi) 0.6055115613982801 sage: RDF(2).log(10) 0.30102999566398114 sage: RDF(2).log(1.5) 1.7095112913514547 sage: RDF(0).log() -infinity sage: RDF(-1).log() 3.141592653589793*I sage: RDF(-1).log(2) # rel tol 1e-15 4.532360141827194*I
- log10()¶
Return log to the base 10 of
self
.EXAMPLES:
sage: r = RDF('16.0'); r.log10() 1.2041199826559248 sage: r.log() / RDF(log(10)) 1.2041199826559246 sage: r = RDF('39.9'); r.log10() 1.6009728956867482
- log2()¶
Return log to the base 2 of
self
.EXAMPLES:
sage: r = RDF(16.0) sage: r.log2() 4.0
sage: r = RDF(31.9); r.log2() 4.9954845188775066
- logpi()¶
Return log to the base \(\pi\) of
self
.EXAMPLES:
sage: r = RDF(16); r.logpi() 2.4220462455931204 sage: r.log() / RDF(log(pi)) 2.4220462455931204 sage: r = RDF('39.9'); r.logpi() 3.2203023346075152
- multiplicative_order()¶
Returns \(n\) such that
self^n == 1
.Only \(\pm 1\) have finite multiplicative order.
EXAMPLES:
sage: RDF(1).multiplicative_order() 1 sage: RDF(-1).multiplicative_order() 2 sage: RDF(3).multiplicative_order() +Infinity
- nan()¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
- nth_root(n)¶
Return the \(n^{th}\) root of
self
.INPUT:
n
– an integer
OUTPUT:
The output is a complex double if
self
is negative and \(n\) is even, otherwise it is a real double.EXAMPLES:
sage: r = RDF(-125.0); r.nth_root(3) -5.000000000000001 sage: r.nth_root(5) -2.6265278044037674 sage: RDF(-2).nth_root(5)^5 # rel tol 1e-15 -2.000000000000001 sage: RDF(-1).nth_root(5)^5 -1.0 sage: RDF(3).nth_root(10)^10 2.9999999999999982 sage: RDF(-1).nth_root(2) 6.123233995736757e-17 + 1.0*I sage: RDF(-1).nth_root(4) 0.7071067811865476 + 0.7071067811865475*I
- prec()¶
Return the precision of this number in bits.
Always returns 53.
EXAMPLES:
sage: RDF(0).prec() 53
- real()¶
Return
self
- we are already real.EXAMPLES:
sage: a = RDF(3) sage: a.real() 3.0
- restrict_angle()¶
Return a number congruent to
self
mod \(2\pi\) that lies in the interval \((-\pi, \pi]\).Specifically, it is the unique \(x \in (-\pi, \pi]\) such that
`self
\(= x + 2\pi n\) for some \(n \in \ZZ\).EXAMPLES:
sage: RDF(pi).restrict_angle() 3.141592653589793 sage: RDF(pi + 1e-10).restrict_angle() -3.1415926534897936 sage: RDF(1+10^10*pi).restrict_angle() 0.9999977606...
- round()¶
Given real number \(x\), rounds up if fractional part is greater than \(0.5\), rounds down if fractional part is less than \(0.5\).
EXAMPLES:
sage: RDF(0.49).round() 0 sage: a=RDF(0.51).round(); a 1
- sech()¶
Return the hyperbolic secant of
self
.EXAMPLES:
sage: RDF(pi).sech() 0.08626673833405443 sage: CDF(pi).sech() 0.08626673833405443
- sign()¶
Returns -1,0, or 1 if
self
is negative, zero, or positive; respectively.EXAMPLES:
sage: RDF(-1.5).sign() -1 sage: RDF(0).sign() 0 sage: RDF(2.5).sign() 1
- sign_mantissa_exponent()¶
Return the sign, mantissa, and exponent of
self
.In Sage (as in MPFR), floating-point numbers of precision \(p\) are of the form \(s m 2^{e-p}\), where \(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and \(-2^{30} + 1 \leq e \leq 2^{30} - 1\); plus the special values
+0
,-0
,+infinity
,-infinity
, andNaN
(which stands for Not-a-Number).This function returns \(s\), \(m\), and \(e-p\). For the special values:
+0
returns(1, 0, 0)
-0
returns(-1, 0, 0)
the return values for
+infinity
,-infinity
, andNaN
are not specified.
EXAMPLES:
sage: a = RDF(exp(1.0)); a 2.718281828459045 sage: sign,mantissa,exponent = RDF(exp(1.0)).sign_mantissa_exponent() sage: sign,mantissa,exponent (1, 6121026514868073, -51) sage: sign*mantissa*(2**exponent) == a True
The mantissa is always a nonnegative number:
sage: RDF(-1).sign_mantissa_exponent() (-1, 4503599627370496, -52)
- sin()¶
Return the sine of
self
.EXAMPLES:
sage: RDF(2).sin() 0.9092974268256817
- sincos()¶
Return a pair consisting of the sine and cosine of
self
.EXAMPLES:
sage: t = RDF.pi()/6 sage: t.sincos() (0.49999999999999994, 0.8660254037844387)
- sinh()¶
Return the hyperbolic sine of
self
.EXAMPLES:
sage: q = RDF.pi()/12 sage: q.sinh() 0.26480022760227073
- sqrt(extend=True, all=False)¶
The square root function.
INPUT:
extend
– bool (default:True
); ifTrue
, return a square root in a complex field if necessary ifself
is negative; otherwise raise aValueError
.all
– bool (default:False
); ifTrue
, return a list of all square roots.
EXAMPLES:
sage: r = RDF(4.0) sage: r.sqrt() 2.0 sage: r.sqrt()^2 == r True
sage: r = RDF(4344) sage: r.sqrt() 65.90902821313632 sage: r.sqrt()^2 - r 0.0
sage: r = RDF(-2.0) sage: r.sqrt() 1.4142135623730951*I
sage: RDF(2).sqrt(all=True) [1.4142135623730951, -1.4142135623730951] sage: RDF(0).sqrt(all=True) [0.0] sage: RDF(-2).sqrt(all=True) [1.4142135623730951*I, -1.4142135623730951*I]
- str()¶
Return the informal string representation of
self
.EXAMPLES:
sage: a = RDF('4.5'); a.str() '4.5' sage: a = RDF('49203480923840.2923904823048'); a.str() '49203480923840.29' sage: a = RDF(1)/RDF(0); a.str() '+infinity' sage: a = -RDF(1)/RDF(0); a.str() '-infinity' sage: a = RDF(0)/RDF(0); a.str() 'NaN'
We verify consistency with
RR
(mpfr reals):sage: str(RR(RDF(1)/RDF(0))) == str(RDF(1)/RDF(0)) True sage: str(RR(-RDF(1)/RDF(0))) == str(-RDF(1)/RDF(0)) True sage: str(RR(RDF(0)/RDF(0))) == str(RDF(0)/RDF(0)) True
- tan()¶
Return the tangent of
self
.EXAMPLES:
sage: q = RDF.pi()/3 sage: q.tan() 1.7320508075688767 sage: q = RDF.pi()/6 sage: q.tan() 0.5773502691896256
- tanh()¶
Return the hyperbolic tangent of
self
.EXAMPLES:
sage: q = RDF.pi()/12 sage: q.tanh() 0.25597778924568454
- trunc()¶
Truncates this number (returns integer part).
EXAMPLES:
sage: RDF(2.99).trunc() 2 sage: RDF(-2.00).trunc() -2 sage: RDF(0.00).trunc() 0
- ulp()¶
Returns the unit of least precision of
self
, which is the weight of the least significant bit ofself
. This is always a strictly positive number. It is also the gap between this number and the closest number with larger absolute value that can be represented.EXAMPLES:
sage: a = RDF(pi) sage: a.ulp() 4.440892098500626e-16 sage: b = a + a.ulp()
Adding or subtracting an ulp always gives a different number:
sage: a + a.ulp() == a False sage: a - a.ulp() == a False sage: b + b.ulp() == b False sage: b - b.ulp() == b False
Since the default rounding mode is round-to-nearest, adding or subtracting something less than half an ulp always gives the same number, unless the result has a smaller ulp. The latter can only happen if the input number is (up to sign) exactly a power of 2:
sage: a - a.ulp()/3 == a True sage: a + a.ulp()/3 == a True sage: b - b.ulp()/3 == b True sage: b + b.ulp()/3 == b True sage: c = RDF(1) sage: c - c.ulp()/3 == c False sage: c.ulp() 2.220446049250313e-16 sage: (c - c.ulp()).ulp() 1.1102230246251565e-16
The ulp is always positive:
sage: RDF(-1).ulp() 2.220446049250313e-16
The ulp of zero is the smallest positive number in RDF:
sage: RDF(0).ulp() 5e-324 sage: RDF(0).ulp()/2 0.0
Some special values:
sage: a = RDF(1)/RDF(0); a +infinity sage: a.ulp() +infinity sage: (-a).ulp() +infinity sage: a = RDF('nan') sage: a.ulp() is a True
The ulp method works correctly with small numbers:
sage: u = RDF(0).ulp() sage: u.ulp() == u True sage: x = u * (2^52-1) # largest denormal number sage: x.ulp() == u True sage: x = u * 2^52 # smallest normal number sage: x.ulp() == u True
- zeta()¶
Return the Riemann zeta function evaluated at this real number.
Note
PARI is vastly more efficient at computing the Riemann zeta function. See the example below for how to use it.
EXAMPLES:
sage: RDF(2).zeta() # rel tol 1e-15 1.6449340668482269 sage: RDF.pi()^2/6 1.6449340668482264 sage: RDF(-2).zeta() 0.0 sage: RDF(1).zeta() +infinity
- sage.rings.real_double.RealDoubleField()¶
Return the unique instance of the
real double field
.EXAMPLES:
sage: RealDoubleField() is RealDoubleField() True
- class sage.rings.real_double.RealDoubleField_class¶
Bases:
sage.rings.ring.Field
An approximation to the field of real numbers using double precision floating point numbers. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of real numbers. This is due to the rounding errors inherent to finite precision calculations.
EXAMPLES:
sage: RR == RDF False sage: RDF == RealDoubleField() # RDF is the shorthand True
sage: RDF(1) 1.0 sage: RDF(2/3) 0.6666666666666666
A
TypeError
is raised if the coercion doesn’t make sense:sage: RDF(QQ['x'].0) Traceback (most recent call last): ... TypeError: cannot convert nonconstant polynomial sage: RDF(QQ['x'](3)) 3.0
One can convert back and forth between double precision real numbers and higher-precision ones, though of course there may be loss of precision:
sage: a = RealField(200)(2).sqrt(); a 1.4142135623730950488016887242096980785696718753769480731767 sage: b = RDF(a); b 1.4142135623730951 sage: a.parent()(b) 1.4142135623730951454746218587388284504413604736328125000000 sage: a.parent()(b) == b True sage: b == RR(a) True
- NaN()¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
- algebraic_closure()¶
Return the algebraic closure of
self
, i.e., the complex double field.EXAMPLES:
sage: RDF.algebraic_closure() Complex Double Field
- characteristic()¶
Returns 0, since the field of real numbers has characteristic 0.
EXAMPLES:
sage: RDF.characteristic() 0
- complex_field()¶
Return the complex field with the same precision as
self
, i.e., the complex double field.EXAMPLES:
sage: RDF.complex_field() Complex Double Field
- construction()¶
Returns the functorial construction of
self
, namely, completion of the rational numbers with respect to the prime at \(\infty\).Also preserves other information that makes this field unique (i.e. the Real Double Field).
EXAMPLES:
sage: c, S = RDF.construction(); S Rational Field sage: RDF == c(S) True
- euler_constant()¶
Return Euler’s gamma constant to double precision.
EXAMPLES:
sage: RDF.euler_constant() 0.5772156649015329
- factorial(n)¶
Return the factorial of the integer \(n\) as a real number.
EXAMPLES:
sage: RDF.factorial(100) 9.332621544394415e+157
- gen(n=0)¶
Return the generator of the real double field.
EXAMPLES:
sage: RDF.0 1.0 sage: RDF.gens() (1.0,)
- is_exact()¶
Returns
False
, because doubles are not exact.EXAMPLES:
sage: RDF.is_exact() False
- log2()¶
Return \(\log(2)\) to the precision of this field.
EXAMPLES:
sage: RDF.log2() 0.6931471805599453 sage: RDF(2).log() 0.6931471805599453
- name()¶
The name of
self
.EXAMPLES:
sage: RDF.name() 'RealDoubleField'
- nan()¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
- ngens()¶
Return the number of generators which is always 1.
EXAMPLES:
sage: RDF.ngens() 1
- pi()¶
Returns \(\pi\) to double-precision.
EXAMPLES:
sage: RDF.pi() 3.141592653589793 sage: RDF.pi().sqrt()/2 0.8862269254527579
- prec()¶
Return the precision of this real double field in bits.
Always returns 53.
EXAMPLES:
sage: RDF.precision() 53
- precision()¶
Return the precision of this real double field in bits.
Always returns 53.
EXAMPLES:
sage: RDF.precision() 53
- random_element(min=- 1, max=1)¶
Return a random element of this real double field in the interval
[min, max]
.EXAMPLES:
sage: RDF.random_element() 0.7369454235661859 sage: RDF.random_element(min=100, max=110) 102.8159473516245
- to_prec(prec)¶
Return the real field to the specified precision. As doubles have fixed precision, this will only return a real double field if
prec
is exactly 53.EXAMPLES:
sage: RDF.to_prec(52) Real Field with 52 bits of precision sage: RDF.to_prec(53) Real Double Field
- zeta(n=2)¶
Return an \(n\)-th root of unity in the real field, if one exists, or raise a
ValueError
otherwise.EXAMPLES:
sage: RDF.zeta() -1.0 sage: RDF.zeta(1) 1.0 sage: RDF.zeta(5) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
- class sage.rings.real_double.ToRDF¶
Bases:
sage.categories.morphism.Morphism
Fast morphism from anything with a
__float__
method to anRDF
element.EXAMPLES:
sage: f = RDF.coerce_map_from(ZZ); f Native morphism: From: Integer Ring To: Real Double Field sage: f(4) 4.0 sage: f = RDF.coerce_map_from(QQ); f Native morphism: From: Rational Field To: Real Double Field sage: f(1/2) 0.5 sage: f = RDF.coerce_map_from(int); f Native morphism: From: Set of Python objects of class 'int' To: Real Double Field sage: f(3r) 3.0 sage: f = RDF.coerce_map_from(float); f Native morphism: From: Set of Python objects of class 'float' To: Real Double Field sage: f(3.5) 3.5
- sage.rings.real_double.is_RealDoubleElement(x)¶
Check if
x
is an element of the real double field.EXAMPLES:
sage: from sage.rings.real_double import is_RealDoubleElement sage: is_RealDoubleElement(RDF(3)) True sage: is_RealDoubleElement(RIF(3)) False
- sage.rings.real_double.is_RealDoubleField(x)¶
Returns
True
ifx
is the field of real double precision numbers.EXAMPLES:
sage: from sage.rings.real_double import is_RealDoubleField sage: is_RealDoubleField(RDF) True sage: is_RealDoubleField(RealField(53)) False