CryptoMiniSat Solver¶
This solver relies on Python bindings provided by upstream cryptominisat.
The cryptominisat
package should be installed on your Sage installation.
AUTHORS:
Thierry Monteil (2017): complete rewrite, using upstream Python bindings, works with cryptominisat 5.
Martin Albrecht (2012): first version, as a cython interface, works with cryptominisat 2.
- class sage.sat.solvers.cryptominisat.CryptoMiniSat(verbosity=0, confl_limit=None, threads=None)¶
Bases:
sage.sat.solvers.satsolver.SatSolver
CryptoMiniSat Solver.
INPUT:
verbosity
– an integer between 0 and 15 (default: 0). Verbosity.confl_limit
– an integer (default:None
). Abort after this many conflicts. If set toNone
, never aborts.threads
– an integer (default: None). The number of thread to use. If set toNone
, the number of threads used corresponds to the number of cpus.
EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat
- add_clause(lits)¶
Add a new clause to set of clauses.
INPUT:
lits
– a tuple of nonzero integers.
Note
If any element
e
inlits
hasabs(e)
greater than the number of variables generated so far, then new variables are created automatically.EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.add_clause((1, -2 , 3)) # optional - cryptominisat
- add_xor_clause(lits, rhs=True)¶
Add a new XOR clause to set of clauses.
INPUT:
lits
– a tuple of positive integers.rhs
– boolean (default:True
). Whether this XOR clause should be evaluated toTrue
orFalse
.
EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.add_xor_clause((1, 2 , 3), False) # optional - cryptominisat
- clauses(filename=None)¶
Return original clauses.
INPUT:
filename
– if notNone
clauses are written tofilename
in DIMACS format (default:None
)
OUTPUT:
If
filename
isNone
then a list oflits, is_xor, rhs
tuples is returned, wherelits
is a tuple of literals,is_xor
is alwaysFalse
andrhs
is alwaysNone
.If
filename
points to a writable file, then the list of original clauses is written to that file in DIMACS format.EXAMPLES:
sage: from sage.sat.solvers import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.add_clause((1,2,3,4,5,6,7,8,-9)) # optional - cryptominisat sage: solver.add_xor_clause((1,2,3,4,5,6,7,8,9), rhs=True) # optional - cryptominisat sage: solver.clauses() # optional - cryptominisat [((1, 2, 3, 4, 5, 6, 7, 8, -9), False, None), ((1, 2, 3, 4, 5, 6, 7, 8, 9), True, True)]
DIMACS format output:
sage: from sage.sat.solvers import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.add_clause((1, 2, 4)) # optional - cryptominisat sage: solver.add_clause((1, 2, -4)) # optional - cryptominisat sage: fn = tmp_filename() # optional - cryptominisat sage: solver.clauses(fn) # optional - cryptominisat sage: print(open(fn).read()) # optional - cryptominisat p cnf 4 2 1 2 4 0 1 2 -4 0
Note that in cryptominisat, the DIMACS standard format is augmented with the following extension: having an
x
in front of a line makes that line an XOR clause:sage: solver.add_xor_clause((1,2,3), rhs=True) # optional - cryptominisat sage: solver.clauses(fn) # optional - cryptominisat sage: print(open(fn).read()) # optional - cryptominisat p cnf 4 3 1 2 4 0 1 2 -4 0 x1 2 3 0
Note that inverting an xor-clause is equivalent to inverting one of the variables:
sage: solver.add_xor_clause((1,2,5),rhs=False) # optional - cryptominisat sage: solver.clauses(fn) # optional - cryptominisat sage: print(open(fn).read()) # optional - cryptominisat p cnf 5 4 1 2 4 0 1 2 -4 0 x1 2 3 0 x1 2 -5 0
- nvars()¶
Return the number of variables. Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.
EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.nvars() # optional - cryptominisat 0
If a variable with intermediate index is not used, it is still considered as a variable:
sage: solver.add_clause((1,-2,4)) # optional - cryptominisat sage: solver.nvars() # optional - cryptominisat 4
- var(decision=None)¶
Return a new variable.
INPUT:
decision
– accepted for compatibility with other solvers, ignored.
EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat sage: solver = CryptoMiniSat() # optional - cryptominisat sage: solver.var() # optional - cryptominisat 1 sage: solver.add_clause((-1,2,-4)) # optional - cryptominisat sage: solver.var() # optional - cryptominisat 5