Subschemes of toric space¶
AUTHORS:
David Kohel (2005): initial version.
William Stein (2005): initial version.
Andrey Novoseltsev (2010-05-17): subschemes of toric varieties.
- class sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_affine_toric(toric_variety, polynomials)¶
Bases:
sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_toric
Construct an algebraic subscheme of an affine toric variety.
Warning
You should not create objects of this class directly. The preferred method to construct such subschemes is to use
subscheme()
method oftoric varieties
.INPUT:
toric_variety
– ambientaffine toric variety
;polynomials
– single polynomial, list, or ideal of defining polynomials in the coordinate ring oftoric_variety
.
OUTPUT:
A
algebraic subscheme of an affine toric variety
.- dimension()¶
Return the dimension of
self
.OUTPUT:
integer.
EXAMPLES:
sage: P1xP1.<s0,s1,t0,t1> = toric_varieties.P1xP1() sage: P1 = P1xP1.subscheme(s0-s1) sage: P1.dimension() 1
A more complicated example where the ambient toric variety is not smooth:
sage: X.<x,y> = toric_varieties.A2_Z2() sage: X.is_smooth() False sage: Y = X.subscheme([x*y, x^2]) sage: Y Closed subscheme of 2-d affine toric variety defined by: x*y, x^2 sage: Y.dimension() 1
- is_smooth(point=None)¶
Test whether the algebraic subscheme is smooth.
INPUT:
point
– A point orNone
(default). The point to test smoothness at.
OUTPUT:
Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.
EXAMPLES:
sage: A2.<x,y> = toric_varieties.A2() sage: cuspidal_curve = A2.subscheme([y^2-x^3]) sage: cuspidal_curve Closed subscheme of 2-d affine toric variety defined by: -x^3 + y^2 sage: cuspidal_curve.is_smooth([1,1]) True sage: cuspidal_curve.is_smooth([0,0]) False sage: cuspidal_curve.is_smooth() False sage: circle = A2.subscheme(x^2+y^2-1) sage: circle.is_smooth([1,0]) True sage: circle.is_smooth() True
A more complicated example where the ambient toric variety is not smooth:
sage: X.<x,y> = toric_varieties.A2_Z2() # 2-d affine space mod Z/2 sage: X.is_smooth() False sage: Y = X.subscheme([x*y, x^2]) # (twice the x=0 curve) mod Z/2 sage: Y Closed subscheme of 2-d affine toric variety defined by: x*y, x^2 sage: Y.dimension() # Y is a Weil divisor but not Cartier 1 sage: Y.is_smooth() True sage: Y.is_smooth([0,0]) True
- class sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_toric(toric_variety, polynomials)¶
Bases:
sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme
Construct an algebraic subscheme of a toric variety.
Warning
You should not create objects of this class directly. The preferred method to construct such subschemes is to use
subscheme()
method oftoric varieties
.INPUT:
toric_variety
– ambienttoric variety
.polynomials
– single polynomial, list, or ideal of defining polynomials in the coordinate ring oftoric_variety
.
OUTPUT:
- affine_algebraic_patch(cone=None, names=None)¶
Return the affine patch corresponding to
cone
as an affine algebraic scheme.INPUT:
cone
– aCone
\(\sigma\) of the fan. It can be omitted for an affine toric variety, in which case the single generating cone is used.
OUTPUT:
An
affine algebraic subscheme
corresponding to the patch \(\mathop{Spec}(\sigma^\vee \cap M)\) associated to the cone \(\sigma\).See also
affine_patch()
, which expresses the patches as subvarieties of affine toric varieties instead.REFERENCES:
David A. Cox, “The Homogeneous Coordinate Ring of a Toric Variety”, Lemma 2.2. arXiv alg-geom/9210008v2
EXAMPLES:
sage: P2.<x,y,z> = toric_varieties.P2() sage: cone = P2.fan().generating_cone(0) sage: V = P2.subscheme(x^3+y^3+z^3) sage: V.affine_algebraic_patch(cone) Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: z0^3 + z1^3 + 1 sage: cone = Cone([(0,1),(2,1)]) sage: A2Z2.<x,y> = AffineToricVariety(cone) sage: A2Z2.affine_algebraic_patch() Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: -z0*z1 + z2^2 sage: V = A2Z2.subscheme(x^2+y^2-1) sage: patch = V.affine_algebraic_patch(); patch Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: -z0*z1 + z2^2, z0 + z1 - 1 sage: nbhd_patch = V.neighborhood([1,0]).affine_algebraic_patch(); nbhd_patch Closed subscheme of Affine Space of dimension 3 over Rational Field defined by: -z0*z1 + z2^2, z0 + z1 - 1 sage: nbhd_patch.embedding_center() (0, 1, 0)
Here we got two defining equations. The first one describes the singularity of the ambient space and the second is the pull-back of \(x^2+y^2-1\)
sage: lp = LatticePolytope([(1,0,0),(1,1,0),(1,1,1),(1,0,1),(-2,-1,-1)], ....: lattice=ToricLattice(3)) sage: X.<x,y,u,v,t> = CPRFanoToricVariety(Delta_polar=lp) sage: Y = X.subscheme(x*v+y*u+t) sage: cone = Cone([(1,0,0),(1,1,0),(1,1,1),(1,0,1)]) sage: Y.affine_algebraic_patch(cone) Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: z0*z2 - z1*z3, z1 + z3 + 1
- affine_patch(i)¶
Return the
i
-th affine patch ofself
as an affine toric algebraic scheme.INPUT:
i
– integer, index of a generating cone of the fan of the ambient space ofself
.
OUTPUT:
subscheme of an affine
toric variety
corresponding to the pull-back ofself
by the embedding morphism of thei
-thaffine patch of the ambient space
ofself
.
The result is cached, so the
i
-th patch is always the same object in memory.EXAMPLES:
sage: P1xP1 = toric_varieties.P1xP1() sage: patch1 = P1xP1.affine_patch(1) sage: patch1.embedding_morphism() Scheme morphism: From: 2-d affine toric variety To: 2-d CPR-Fano toric variety covered by 4 affine patches Defn: Defined on coordinates by sending [t : x] to [1 : t : x : 1] sage: P1xP1.inject_variables() Defining s, t, x, y sage: P1 = P1xP1.subscheme(x-y) sage: subpatch = P1.affine_patch(1) sage: subpatch Closed subscheme of 2-d affine toric variety defined by: x - 1
- dimension()¶
Return the dimension of
self
.OUTPUT:
Integer. If
self
is empty, \(-1\) is returned.EXAMPLES:
sage: P1xP1 = toric_varieties.P1xP1() sage: P1xP1.inject_variables() Defining s, t, x, y sage: P1 = P1xP1.subscheme(s-t) sage: P1.dimension() 1 sage: P1xP1.subscheme([s-t, (s-t)^2]).dimension() 1 sage: P1xP1.subscheme([s, t]).dimension() -1
- fan()¶
Return the fan of the ambient space.
OUTPUT:
A fan.
EXAMPLES:
sage: P2.<x,y,z> = toric_varieties.P(2) sage: E = P2.subscheme([x^2+y^2+z^2]) sage: E.fan() Rational polyhedral fan in 2-d lattice N
- is_nondegenerate()¶
Check if
self
is nondegenerate.OUTPUT:
Whether the variety is nondegenerate, that is, the intersection with every open torus orbit is smooth and transversal.
EXAMPLES:
sage: P2.<x,y,z> = toric_varieties.P2() sage: P2.subscheme([x^3 + y^3 + z^3]).is_nondegenerate() True sage: P2.subscheme([x*y*z]).is_nondegenerate() False sage: X = P2.subscheme([(x-y)^2*(x+y) + x*y*z + z^3]) sage: X.is_smooth() True sage: X.is_nondegenerate() False
A K3 surface in \(\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1\):
sage: diamond = lattice_polytope.cross_polytope(3) sage: fan = FaceFan(diamond) sage: P1xP1xP1 = ToricVariety(fan) sage: z0, z1, z2, z3, z4, z5 = P1xP1xP1.gens() sage: t = 5; sage: F = z0^2*z1^2*z2^2 + z1^2*z2^2*z3^2 + z0^2*z2^2*z4^2\ ....: + z2^2*z3^2*z4^2 + t*z0*z1*z2*z3*z4*z5 + z0^2*z1^2*z5^2\ ....: + z1^2*z3^2*z5^2 + z0^2*z4^2*z5^2 + z3^2*z4^2*z5^2 sage: X = P1xP1xP1.subscheme([F]) sage: X.is_smooth() True sage: X.is_nondegenerate() False
Taking a random change of variables breaks the symmetry, but makes the surface nondegenerate:
sage: F1 = F.subs(z0 = 1*z0 + 1*z3, z3 = 1*z0 + 2*z3,\ ....: z1 = -2*z1 + -1*z4, z4 = 1*z1 + 2*z4,\ ....: z2 = -3*z2 + -1*z5, z5 = -3*z2 + 2*z5 ) sage: Y = P1xP1xP1.subscheme([F1]) sage: Y.is_smooth() True sage: Y.is_nondegenerate() True This example is from Hamm, :arxiv:`1106.1826v1`. It addresses an issue raised at :trac:`15239`:: sage: X = toric_varieties.WP([1,4,2,3], names='z0 z1 z2 z3') sage: X.inject_variables() Defining z0, z1, z2, z3 sage: g0 = z1^3 + z2^6 +z3^4 sage: g = g0-2*z3^2*z0^6+z2*z0^10+z0^12 sage: Y = X.subscheme([g]) sage: Y.is_nondegenerate() False
It handles nonzero characteristic:
sage: P2.<x,y,z> = toric_varieties.P2() sage: f = x^5 + 2*x*y^4 + y^5 - 2*y^3*z^2 + x*z^4 - 2*z^5 sage: P2.change_ring(GF(5)).subscheme([f]).is_nondegenerate() True sage: P2.change_ring(GF(7)).subscheme([f]).is_nondegenerate() False
- is_schon()¶
Check if
self
is schon (nondegenerate).See \(is_nondegenerate\) for further documentation.
EXAMPLES:
sage: P2.<x,y,z> = toric_varieties.P2() sage: X = P2.subscheme([(x-y)^2*(x+y) + x*y*z + z^3]) sage: X.is_smooth() True sage: X.is_schon() False
- is_smooth(point=None)¶
Test whether the algebraic subscheme is smooth.
INPUT:
point
– A point orNone
(default). The point to test smoothness at.
OUTPUT:
Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.
EXAMPLES:
sage: P2.<x,y,z> = toric_varieties.P2() sage: cuspidal_curve = P2.subscheme([y^2*z-x^3]) sage: cuspidal_curve Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine patches defined by: -x^3 + y^2*z sage: cuspidal_curve.is_smooth([1,1,1]) True sage: cuspidal_curve.is_smooth([0,0,1]) False sage: cuspidal_curve.is_smooth() False
Any sufficiently generic cubic hypersurface is smooth:
sage: P2.subscheme([y^2*z-x^3+z^3+1/10*x*y*z]).is_smooth() True
A more complicated example:
sage: dP6.<x0,x1,x2,x3,x4,x5> = toric_varieties.dP6() sage: disjointP1s = dP6.subscheme(x0*x3) sage: disjointP1s.is_smooth() True sage: intersectingP1s = dP6.subscheme(x0*x1) sage: intersectingP1s.is_smooth() False
A smooth hypersurface in a compact singular toric variety:
sage: lp = LatticePolytope([(1,0,0),(1,1,0),(1,1,1),(1,0,1),(-2,-1,-1)], ....: lattice=ToricLattice(3)) sage: X.<x,y,u,v,t> = CPRFanoToricVariety(Delta_polar=lp) sage: Y = X.subscheme(x*v+y*u+t) sage: cone = Cone([(1,0,0),(1,1,0),(1,1,1),(1,0,1)]) sage: Y.is_smooth() True
- neighborhood(point)¶
Return an toric algebraic scheme isomorphic to neighborhood of the
point
.INPUT:
point
– a point of the toric algebraic scheme.
OUTPUT:
An affine toric algebraic scheme (polynomial equations in an affine toric variety) with fixed
embedding_morphism()
andembedding_center()
.EXAMPLES:
sage: P.<x,y,z>= toric_varieties.P2() sage: S = P.subscheme(x+2*y+3*z) sage: s = S.point([0,-3,2]); s [0 : -3 : 2] sage: patch = S.neighborhood(s); patch Closed subscheme of 2-d affine toric variety defined by: x + 2*y + 6 sage: patch.embedding_morphism() Scheme morphism: From: Closed subscheme of 2-d affine toric variety defined by: x + 2*y + 6 To: Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine patches defined by: x + 2*y + 3*z Defn: Defined on coordinates by sending [x : y] to [-2*y - 6 : y : 2] sage: patch.embedding_center() [0 : -3] sage: patch.embedding_morphism()(patch.embedding_center()) [0 : -3 : 2]
A more complicated example:
sage: dP6.<x0,x1,x2,x3,x4,x5> = toric_varieties.dP6() sage: twoP1 = dP6.subscheme(x0*x3) sage: patch = twoP1.neighborhood([0,1,2, 3,4,5]); patch Closed subscheme of 2-d affine toric variety defined by: 3*x0 sage: patch.embedding_morphism() Scheme morphism: From: Closed subscheme of 2-d affine toric variety defined by: 3*x0 To: Closed subscheme of 2-d CPR-Fano toric variety covered by 6 affine patches defined by: x0*x3 Defn: Defined on coordinates by sending [x0 : x1] to [0 : x1 : 2 : 3 : 4 : 5] sage: patch.embedding_center() [0 : 1] sage: patch.embedding_morphism()(patch.embedding_center()) [0 : 1 : 2 : 3 : 4 : 5]