C Int Lists¶
This is a class for fast basic operations with lists of C ints. It is similar to the double precision TimeSeries class. It has all the standard C int semantics, of course, including overflow. It is also similar to the Python list class, except all elements are C ints, which makes some operations much, much faster. For example, concatenating two IntLists can be over 10 times faster than concatenating the corresponding Python lists of ints, and taking slices is also much faster.
AUTHOR:
William Stein, 2010-03
- class sage.stats.intlist.IntList¶
Bases:
object
A list of C int’s.
- list()¶
Return Python list version of self with Python ints as entries.
EXAMPLES:
sage: a = stats.IntList([1..15]); a [1, 2, 3, 4, 5 ... 11, 12, 13, 14, 15] sage: a.list() [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] sage: list(a) == a.list() True sage: type(a.list()[0]) <... 'int'>
- max(index=False)¶
Return the largest value in this time series. If this series has length 0 we raise a ValueError
INPUT:
index – bool (default: False); if True, also return index of maximum entry.
OUTPUT:
int – largest value
int – index of largest value; only returned if index=True
EXAMPLES:
sage: v = stats.IntList([1,-4,3,-2,-4,3]) sage: v.max() 3 sage: v.max(index=True) (3, 2)
- min(index=False)¶
Return the smallest value in this integer list. If this series has length 0 we raise a ValueError.
INPUT:
index – bool (default: False); if True, also return index of minimal entry.
OUTPUT:
float – smallest value
integer – index of smallest value; only returned if index=True
EXAMPLES:
sage: v = stats.IntList([1,-4,3,-2,-4]) sage: v.min() -4 sage: v.min(index=True) (-4, 1)
- plot(*args, **kwds)¶
Return a plot of this IntList. This just constructs the corresponding double-precision floating point TimeSeries object, passing on all arguments.
EXAMPLES:
sage: stats.IntList([3,7,19,-2]).plot() Graphics object consisting of 1 graphics primitive sage: stats.IntList([3,7,19,-2]).plot(color='red',pointsize=50,points=True) Graphics object consisting of 1 graphics primitive
- plot_histogram(*args, **kwds)¶
Return a histogram plot of this IntList. This just constructs the corresponding double-precision floating point TimeSeries object, and plots it, passing on all arguments.
EXAMPLES:
sage: stats.IntList([1..15]).plot_histogram() Graphics object consisting of 50 graphics primitives
- prod()¶
Return the product of the entries of self.
EXAMPLES:
sage: a = stats.IntList([1..10]); a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: a.prod() 3628800 sage: factorial(10) 3628800
Note that there can be overflow:
sage: a = stats.IntList([2^30, 2]); a [1073741824, 2] sage: a.prod() -2147483648
- sum()¶
Return the sum of the entries of self.
EXAMPLES:
sage: stats.IntList([1..100]).sum() 5050
Note that there can be overflow, since the entries are C ints:
sage: a = stats.IntList([2^30,2^30]); a [1073741824, 1073741824] sage: a.sum() -2147483648
- time_series()¶
Return TimeSeries version of self, which involves changing each entry to a double.
EXAMPLES:
sage: T = stats.IntList([-2,3,5]).time_series(); T [-2.0000, 3.0000, 5.0000] sage: type(T) <... 'sage.finance.time_series.TimeSeries'>
- sage.stats.intlist.unpickle_intlist_v1(v, n)¶
Version 1 unpickle method.
INPUT:
v
– a raw char buffer
EXAMPLES:
sage: v = stats.IntList([1,2,3]) sage: s = v.__reduce__()[1][0] sage: type(s) == type(b'') True sage: sage.stats.intlist.unpickle_intlist_v1(s, 3) [1, 2, 3] sage: sage.stats.intlist.unpickle_intlist_v1(s+s,6) [1, 2, 3, 1, 2, 3] sage: sage.stats.intlist.unpickle_intlist_v1(b'',0) []