-------------------
Elementary crystals
-------------------

.. NOTE::

    Each of these crystals will work with any Cartan matrix input (with weights
    from the weight lattice corresponding to the Cartan matrix given).

T-crystal
---------

Let `\lambda` be a weight. As defined in [Kashiwara1993]_ (see, also,
[Kashiwara1995]_) the crystal `T_{\lambda} = \{ t_{\lambda} \}` is a single
element crystal with the crystal structure defined by

.. MATH::

    \mathrm{wt}(t_\lambda) = \lambda, \quad
    e_i t_{\lambda} = f_i t_{\lambda} = 0, \quad
    \varepsilon_i(t_{\lambda}) = \varphi_i(t_{\lambda}) = -\infty.

The crystal `T_{\lambda}` shifts the weights of the vertices in a crystal
`B` by `\lambda` when tensored with `B`, but leaves the graph structure of
`B` unchanged. That is, for all `b \in B`, we have `\mathrm{wt}(t_\lambda
\otimes b) = \mathrm{wt}(b) + \lambda`::

    sage: B = crystals.Tableaux(['A',2],shape=[2,1])
    sage: T = crystals.elementary.T(['A',2], B.Lambda()[1] + B.Lambda()[2])
    sage: V = crystals.TensorProduct(T,B)
    sage: for x in V:
    ....:     print(x.weight())
    ....:
    (4, 2, 0)
    (3, 3, 0)
    (3, 2, 1)
    (3, 1, 2)
    (2, 2, 2)
    (4, 1, 1)
    (3, 2, 1)
    (2, 3, 1)
    sage: for x in B:
    ....:     print(x.weight() + T[0].weight())
    ....:
    (4, 2, 0)
    (3, 3, 0)
    (3, 2, 1)
    (3, 1, 2)
    (2, 2, 2)
    (4, 1, 1)
    (3, 2, 1)
    (2, 3, 1)

.. WARNING::

    Sage uses the opposite convention for the tensor product rule to Kashiwara's
    definition, so care must be taken when comparing the examples here with
    Kashiwara's papers.

Here is an example using a hyperbolic Cartan matrix::

    sage: A = CartanMatrix([[2,-4],[-4,2]])
    sage: La = RootSystem(A).weight_lattice().fundamental_weights()
    sage: La
    Finite family {0: Lambda[0], 1: Lambda[1]}
    sage: T = crystals.elementary.T(A,La[1])
    sage: T
    The T crystal of type [ 2 -4]
    [-4  2] and weight Lambda[1]


C-crystal
---------

Defined in [Kashiwara1993]_, the component crystal `C = \{c\}` is the single
element crystal whose crystal structure is defined by

.. MATH::

    \mathrm{wt}(c) = 0, \quad
    e_i c = f_i c = 0, \quad
    \varepsilon_i(c) = \varphi_i(c) = 0.

Note `C \cong B(0)`, where `B(0)` is the highest weight crystal of highest
weight `0`.

The crystal `C \otimes T_\mu` is useful when finding subcrystals inside
irreducible highest weight crystals `B(\lambda)` where `\lambda` is larger than
`\mu` in the lexicographic order.  For example::

    sage: P = RootSystem("C2").weight_lattice()
    sage: La = P.fundamental_weights()
    sage: h = P.simple_coroots()
    sage: T = crystals.elementary.T("C2", 2*La[1])
    sage: C = crystals.elementary.Component(P)
    sage: B = crystals.TensorProduct(C,T)
    sage: b = B(C[0],T[0])
    sage: for i in B.index_set(): print(b.epsilon(i))
    -2
    0
    sage: for i in B.index_set(): print(b.phi(i))
    0
    0
    sage: for i in B.index_set(): print(b.f(i))
    None
    None
    sage: for i in B.index_set(): print(b.e(i))
    None
    None

This new crystal can be summarized into the R-crystal below.


R-crystal
---------

For a fixed weight `\lambda`, the crystal `R_{\lambda} = \{ r_{\lambda} \}`
is a single element crystal with the crystal structure defined by

.. MATH::

    \mathrm{wt}(r_{\lambda}) = \lambda, \quad
    e_i r_{\lambda} = f_i r_{\lambda} = 0, \quad
    \varepsilon_i(r_{\lambda}) = -\langle h_i, \lambda\rangle, \quad
    \varphi_i(r_{\lambda}) = 0,

where `\{h_i\}` are the simple coroots.  See page 146 [Joseph1995]_, for
example, for more details.  (Note that in [Joseph1995]_, this crystal is denoted
by `S_\lambda`.)

Tensoring `R_{\lambda}` with a crystal `B` results in shifting the weights
of the vertices in `B` by `\lambda` and may also cut a subset out of the
original graph of `B`.

.. WARNING::

    Sage uses the opposite convention for the tensor product rule to Kashiwara's
    definition, so care must be taken when comparing the examples here with
    some of the literature.

For example, suppose `\mu \le \lambda` in lexicographic ordering on weights,
and one wants to see `B(\mu)` as a subcrystal of `B(\lambda)`.  Then `B(\mu)`
may be realized as the connected component of `R_{\mu-\lambda}\otimes B(\lambda)`
containing the highest weight `r_{\mu-\lambda} \otimes u_\lambda`, where
`u_\lambda` is the highest weight vector in `B(\lambda)`::

    sage: La = RootSystem(['B',4]).weight_lattice().fundamental_weights()
    sage: Bla = crystals.NakajimaMonomials(['B',4], La[1]+La[2])
    sage: Bmu = crystals.NakajimaMonomials(['B',4], La[1])
    sage: R = crystals.elementary.R(['B',4], -La[2])
    sage: T = crystals.TensorProduct(R,Bla)
    sage: mg = mg = T(R[0], Bla.module_generators[0])
    sage: S = T.subcrystal(generators=[mg])
    sage: G = T.digraph(subset=S)
    sage: Bmu.digraph().is_isomorphic(G, edge_labels=True)
    True
    sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens external window)

.. image:: ../media/RmutensorBlambda.png
   :scale: 50
   :align: center


`i`-th elementary crystal
-------------------------

For `i` an element of the index set of type `X`, the crystal `B_i` of type
`X` is the set

.. MATH::

    B_i = \{ b_i(m) : m \in \ZZ \},

where the crystal structure is given by `\mathrm{wt}\bigl(b_i(m)\bigr) =
m\alpha_i` and

.. MATH::

    \begin{aligned}
    \varphi_j\bigl(b_i(m)\bigr) &= \begin{cases}
        m & \text{ if } j=i, \\
        -\infty & \text{ if } j\neq i,
    \end{cases} &
    \varepsilon_j\bigl(b_i(m)\bigr) &= \begin{cases}
        -m & \text{ if } j=i, \\
        -\infty & \text{ if } j\neq i,
    \end{cases} \\
    f_j b_i(m) &= \begin{cases}
        b_i(m-1) & \text{ if } j=i, \\
        0 & \text{ if } j\neq i,
    \end{cases} &
    e_j b_i(m) &= \begin{cases}
        b_i(m+1) & \text{ if } j=i, \\
        0 & \text{ if } j\neq i.
    \end{cases}
    \end{aligned}

See [Kashiwara1993]_ or [Kashiwara1995]_ for more information.  Here is an
example::

    sage: B = crystals.elementary.Elementary("A2",1)
    sage: S = B.subcrystal(max_depth=4, generators=[B(0)])
    sage: sorted(s for s in S)
    [-4, -3, -2, -1, 0, 1, 2, 3, 4]
    sage: G = B.digraph(subset=S)
    sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens external window)

.. image:: ../media/elementaryA2.png
   :scale: 50
   :align: center

.. WARNING::

    To reiterate, Sage uses the opposite convention for the tensor product rule
    to Kashiwara's definition.  In particular, using Sage's convention, one has
    `T_\lambda \otimes B_i \cong B_i \otimes T_{s_i\lambda}`, where `s_i` is the
    `i`-th simple reflection.