Vector calculus in the Euclidean plane¶
This tutorial introduces some vector calculus capabilities of SageMath in the framework of the 2-dimensional Euclidean space. The corresponding tools have been developed via the SageManifolds project.
The tutorial is also available as a Jupyter notebook, either
passive (nbviewer
)
or interactive (binder
).
1. Defining the Euclidean plane¶
We define the Euclidean plane \(\mathbb{E}^2\) as a 2-dimensional Euclidean
space, with Cartesian coordinates \((x,y)\), via the function
EuclideanSpace
:
sage: E.<x,y> = EuclideanSpace()
sage: E
Euclidean plane E^2
Thanks to the use of <x,y>
in the above command, the Python variables
x
and y
are assigned to the symbolic variables \(x\) and \(y\) describing
the Cartesian coordinates (there is no need to declare them via var()
,
i.e. to type x, y = var('x y')
):
sage: type(y)
<type 'sage.symbolic.expression.Expression'>
Instead of using the variables x
and y
, one may also access to the
coordinates by their indices in the chart of Cartesian coordinates:
sage: cartesian = E.cartesian_coordinates()
sage: cartesian
Chart (E^2, (x, y))
sage: cartesian[1]
x
sage: cartesian[2]
y
sage: y is cartesian[2]
True
Each of the Cartesian coordinates spans the entire real line:
sage: cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
2. Vector fields¶
The Euclidean plane \(\mathbb{E}^2\) is canonically endowed with the vector frame associated with Cartesian coordinates:
sage: E.default_frame()
Coordinate frame (E^2, (e_x,e_y))
Vector fields on \(\mathbb{E}^2\) are then defined from their components in that frame:
sage: v = E.vector_field(-y, x, name='v')
sage: v.display()
v = -y e_x + x e_y
The access to individual components is performed by the square bracket operator:
sage: v[1]
-y
sage: v[:]
[-y, x]
A plot of the vector field \(v\) (this is with the default parameters, see the
documentation of
plot()
for the
various options):
sage: v.plot()
Graphics object consisting of 80 graphics primitives
One may also define a vector field by setting the components in a second stage:
sage: w = E.vector_field(name='w')
sage: w[1] = function('w_x')(x,y)
sage: w[2] = function('w_y')(x,y)
sage: w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
Note that in the above example the components of \(w\) are unspecified functions of \((x,y)\), contrary to the components of \(v\).
Standard linear algebra operations can be performed on vector fields:
sage: s = 2*v + x*w
sage: s.display()
(x*w_x(x, y) - 2*y) e_x + (x*w_y(x, y) + 2*x) e_y
Scalar product and norm¶
The dot (or scalar) product \(u\cdot v\) of the vector fields \(u\) and \(v\) is
obtained by the operator
dot_product()
; it
gives rise to a scalar field on \(\mathbb{E}^2\):
sage: s = v.dot_product(w)
sage: s
Scalar field v.w on the Euclidean plane E^2
A shortcut alias of
dot_product()
is
dot
:
sage: s == v.dot(w)
True
sage: s.display()
v.w: E^2 → ℝ
(x, y) ↦ -y*w_x(x, y) + x*w_y(x, y)
The symbolic expression representing the scalar field \(v\cdot w\) is obtained
by means of the method expr()
:
sage: s.expr()
-y*w_x(x, y) + x*w_y(x, y)
The Euclidean norm of the vector field \(v\) is a scalar field on \(\mathbb{E}^2\):
sage: s = norm(v)
sage: s.display()
|v|: E^2 → ℝ
(x, y) ↦ sqrt(x^2 + y^2)
Again, the corresponding symbolic expression is obtained via
expr()
:
sage: s.expr()
sqrt(x^2 + y^2)
sage: norm(w).expr()
sqrt(w_x(x, y)^2 + w_y(x, y)^2)
We have of course \(\|v\|^2 = v\cdot v\)
sage: norm(v)^2 == v.dot(v)
True
Values at a given point¶
We introduce a point \(p\in \mathbb{E}^2\) via the generic SageMath syntax for
creating an element from its parent (here \(\mathbb{E}^2\)), i.e. the call
operator ()
, with the Cartesian coordinates of the point as the first
argument:
sage: p = E((-2,3), name='p')
sage: p
Point p on the Euclidean plane E^2
The coordinates of \(p\) are returned by the method
coord()
:
sage: p.coord()
(-2, 3)
or by letting the chart cartesian
act on the point:
sage: cartesian(p)
(-2, 3)
The value of the scalar field s = norm(v)
at \(p\) is:
sage: s(p)
sqrt(13)
The value of a vector field at \(p\) is obtained by the method
at()
(since the call operator ()
is reserved for the action on scalar fields,
see Vector fields as derivations below):
sage: vp = v.at(p)
sage: vp
Vector v at Point p on the Euclidean plane E^2
sage: vp.display()
v = -3 e_x - 2 e_y
sage: wp = w.at(p)
sage: wp.display()
w = w_x(-2, 3) e_x + w_y(-2, 3) e_y
sage: s = v.at(p) + pi*w.at(p)
sage: s.display()
(pi*w_x(-2, 3) - 3) e_x + (pi*w_y(-2, 3) - 2) e_y
3. Differential operators¶
The standard operators \(\mathrm{grad}\), \(\mathrm{div}\), etc. involved in
vector calculus are accessible as methods on scalar fields and vector fields
(e.g. v.div()
). However, to use standard mathematical notations (e.g.
div(v)
), let us import the functions
grad()
, div()
,
and laplacian()
in the global namespace:
sage: from sage.manifolds.operators import *
Divergence¶
The divergence of a vector field is returned by the function
div()
; the output is a scalar field on
\(\mathbb{E}^2\):
sage: div(v)
Scalar field div(v) on the Euclidean plane E^2
sage: div(v).display()
div(v): E^2 → ℝ
(x, y) ↦ 0
In the present case, \(\mathrm{div}\, v\) vanishes identically:
sage: div(v) == 0
True
On the contrary, the divergence of \(w\) is:
sage: div(w).display()
div(w): E^2 → ℝ
(x, y) ↦ d(w_x)/dx + d(w_y)/dy
sage: div(w).expr()
diff(w_x(x, y), x) + diff(w_y(x, y), y)
Gradient¶
The gradient of a scalar field, e.g. s = norm(v)
, is returned by the
function grad()
; the output is a vector field:
sage: s = norm(v)
sage: grad(s)
Vector field grad(|v|) on the Euclidean plane E^2
sage: grad(s).display()
grad(|v|) = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
sage: grad(s)[2]
y/sqrt(x^2 + y^2)
For a generic scalar field, like:
sage: F = E.scalar_field(function('f')(x,y), name='F')
we have:
sage: grad(F).display()
grad(F) = d(f)/dx e_x + d(f)/dy e_y
sage: grad(F)[:]
[d(f)/dx, d(f)/dy]
Of course, we may combine grad()
and
div()
:
sage: grad(div(w)).display()
grad(div(w)) = (d^2(w_x)/dx^2 + d^2(w_y)/dxdy) e_x + (d^2(w_x)/dxdy + d^2(w_y)/dy^2) e_y
Laplace operator¶
The Laplace operator \(\Delta\) is obtained by the function
laplacian()
; it acts on scalar fields:
sage: laplacian(F).display()
Delta(F): E^2 → ℝ
(x, y) ↦ d^2(f)/dx^2 + d^2(f)/dy^2
as well as on vector fields:
sage: laplacian(w).display()
Delta(w) = (d^2(w_x)/dx^2 + d^2(w_x)/dy^2) e_x + (d^2(w_y)/dx^2 + d^2(w_y)/dy^2) e_y
For a scalar field, we have the identity
as we can check:
sage: laplacian(F) == div(grad(F))
True
4. Polar coordinates¶
Polar coordinates \((r,\phi)\) are introduced on \(\mathbb{E}^2\) by:
sage: polar.<r,ph> = E.polar_coordinates()
sage: polar
Chart (E^2, (r, ph))
sage: polar.coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)
They are related to Cartesian coordinates by the following transformations:
sage: E.coord_change(polar, cartesian).display()
x = r*cos(ph)
y = r*sin(ph)
sage: E.coord_change(cartesian, polar).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)
The orthonormal vector frame \((e_r, e_\phi)\) associated with polar coordinates
is returned by the method
polar_frame()
:
sage: polar_frame = E.polar_frame()
sage: polar_frame
Vector frame (E^2, (e_r,e_ph))
sage: er = polar_frame[1]
sage: er.display()
e_r = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
The above display is in the default frame (Cartesian frame) with the default coordinates (Cartesian). Let us ask for the display in the same frame, but with the components expressed in polar coordinates:
sage: er.display(cartesian.frame(), polar)
e_r = cos(ph) e_x + sin(ph) e_y
Similarly:
sage: eph = polar_frame[2]
sage: eph.display()
e_ph = -y/sqrt(x^2 + y^2) e_x + x/sqrt(x^2 + y^2) e_y
sage: eph.display(cartesian.frame(), polar)
e_ph = -sin(ph) e_x + cos(ph) e_y
We may check that \((e_r, e_\phi)\) is an orthonormal frame:
sage: all([er.dot(er) == 1, er.dot(eph) == 0, eph.dot(eph) == 1])
True
Scalar fields can be expressed in terms of polar coordinates:
sage: F.display()
F: E^2 → ℝ
(x, y) ↦ f(x, y)
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
sage: F.display(polar)
F: E^2 → ℝ
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
and we may ask for the components of vector fields in terms of the polar frame:
sage: v.display() # default frame and default coordinates (both Cartesian ones)
v = -y e_x + x e_y
sage: v.display(polar_frame) # polar frame and default coordinates
v = sqrt(x^2 + y^2) e_ph
sage: v.display(polar_frame, polar) # polar frame and polar coordinates
v = r e_ph
sage: w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
sage: w.display(polar_frame, polar)
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r
+ (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
Gradient in polar coordinates¶
Let us define a generic scalar field in terms of polar coordinates:
sage: H = E.scalar_field({polar: function('h')(r,ph)}, name='H')
sage: H.display(polar)
H: E^2 → ℝ
(r, ph) ↦ h(r, ph)
The gradient of \(H\) is then:
sage: grad(H).display(polar_frame, polar)
grad(H) = d(h)/dr e_r + d(h)/dph/r e_ph
The access to individual components is achieved via the square bracket operator, where, in addition to the index, one has to specify the vector frame and the coordinates if they are not the default ones:
sage: grad(H).display(cartesian.frame(), polar)
grad(H) = (r*cos(ph)*d(h)/dr - sin(ph)*d(h)/dph)/r e_x + (r*sin(ph)*d(h)/dr
+ cos(ph)*d(h)/dph)/r e_y
sage: grad(H)[polar_frame, 2, polar]
d(h)/dph/r
Divergence in polar coordinates¶
Let us define a generic vector field in terms of polar coordinates:
sage: u = E.vector_field(function('u_r')(r,ph),
....: function('u_ph', latex_name=r'u_\phi')(r,ph),
....: frame=polar_frame, chart=polar, name='u')
sage: u.display(polar_frame, polar)
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
Its divergence is:
sage: div(u).display(polar)
div(u): E^2 → ℝ
(r, ph) ↦ (r*d(u_r)/dr + u_r(r, ph) + d(u_ph)/dph)/r
sage: div(u).expr(polar)
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
sage: div(u).expr(polar).expand()
u_r(r, ph)/r + diff(u_ph(r, ph), ph)/r + diff(u_r(r, ph), r)
Using polar coordinates by default:¶
In order to avoid specifying the arguments polar_frame
and polar
in
display()
, expr()
and []
, we may change the default values by
means of
set_default_chart()
and
set_default_frame()
:
sage: E.set_default_chart(polar)
sage: E.set_default_frame(polar_frame)
Then we have:
sage: u.display()
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
sage: u[1]
u_r(r, ph)
sage: v.display()
v = r e_ph
sage: v[2]
r
sage: w.display()
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r + (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
sage: div(u).expr()
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
5. Advanced topics: the Euclidean plane as a Riemannian manifold¶
\(\mathbb{E}^2\) is actually a Riemannian manifold (see
pseudo_riemannian
), i.e. a smooth real
manifold endowed with a positive definite metric tensor:
sage: E.category()
Join of
Category of smooth manifolds over Real Field with 53 bits of precision and
Category of connected manifolds over Real Field with 53 bits of precision and
Category of complete metric spaces
sage: E.base_field() is RR
True
Actually RR
is used here as a proxy for the real field (this should
be replaced in the future, see the discussion at
#24456) and the 53 bits of
precision play of course no role for the symbolic computations.
The user atlas of \(\mathbb{E}^2\) has two charts:
sage: E.atlas()
[Chart (E^2, (x, y)), Chart (E^2, (r, ph))]
while there are three vector frames defined on \(\mathbb{E}^2\):
sage: E.frames()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
Indeed, there are two frames associated with polar coordinates: the coordinate frame \((\frac{\partial}{\partial r}, \frac{\partial}{\partial \phi})\) and the orthonormal frame \((e_r, e_\phi)\).
Riemannian metric¶
The default metric tensor of \(\mathbb{E}^2\) is:
sage: g = E.metric()
sage: g
Riemannian metric g on the Euclidean plane E^2
sage: g.display()
g = e^r⊗e^r + e^ph⊗e^ph
In the above display, e^r
= \(e^r\) and e^ph
= \(e^\phi\) are the 1-forms
defining the coframe dual to the orthonormal polar frame \((e_r, e_\phi)\),
which is the default vector frame on \(\mathbb{E}^2\):
sage: polar_frame.coframe()
Coframe (E^2, (e^r,e^ph))
Of course, we may ask for some display with respect to frames different from the default one:
sage: g.display(cartesian.frame())
g = dx⊗dx + dy⊗dy
sage: g.display(polar.frame())
g = dr⊗dr + r^2 dph⊗dph
sage: g[:]
[1 0]
[0 1]
sage: g[polar.frame(),:]
[ 1 0]
[ 0 r^2]
\(g\) is a flat metric: its (Riemann) curvature tensor (see
riemann()
)
is zero:
sage: g.riemann()
Tensor field Riem(g) of type (1,3) on the Euclidean plane E^2
sage: g.riemann().display()
Riem(g) = 0
The metric \(g\) is defining the dot product on \(\mathbb{E}^2\):
sage: v.dot(w) == g(v,w)
True
sage: norm(v) == sqrt(g(v,v))
True
Vector fields as derivations¶
Vector fields act as derivations on scalar fields:
sage: v(F)
Scalar field v(F) on the Euclidean plane E^2
sage: v(F).display()
v(F): E^2 → ℝ
(x, y) ↦ -y*d(f)/dx + x*d(f)/dy
(r, ph) ↦ -r*sin(ph)*d(f)/d(r*cos(ph)) + r*cos(ph)*d(f)/d(r*sin(ph))
sage: v(F) == v.dot(grad(F))
True
sage: dF = F.differential()
sage: dF
1-form dF on the Euclidean plane E^2
sage: v(F) == dF(v)
True
The set \(\mathfrak{X}(\mathbb{E}^2)\) of all vector fields on \(\mathbb{E}^2\) is a free module of rank 2 over the commutative algebra of smooth scalar fields on \(\mathbb{E}^2\), \(C^\infty(\mathbb{E}^2)\):
sage: XE = v.parent()
sage: XE
Free module X(E^2) of vector fields on the Euclidean plane E^2
sage: XE.category()
Category of finite dimensional modules over Algebra of differentiable
scalar fields on the Euclidean plane E^2
sage: XE.base_ring()
Algebra of differentiable scalar fields on the Euclidean plane E^2
sage: CE = F.parent()
sage: CE
Algebra of differentiable scalar fields on the Euclidean plane E^2
sage: CE is XE.base_ring()
True
sage: CE.category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets of topological spaces
sage: rank(XE)
2
The bases of the free module \(\mathfrak{X}(\mathbb{E}^2)\) are nothing but the vector frames defined on \(\mathbb{E}^2\):
sage: XE.bases()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
Tangent spaces¶
A vector field evaluated at a point $p$ is a vector in the tangent space \(T_p\mathbb{E}^2\):
sage: vp = v.at(p)
sage: vp.display()
v = -3 e_x - 2 e_y
sage: Tp = vp.parent()
sage: Tp
Tangent space at Point p on the Euclidean plane E^2
sage: Tp.category()
Category of finite dimensional vector spaces over Symbolic Ring
sage: dim(Tp)
2
sage: isinstance(Tp, FiniteRankFreeModule)
True
sage: sorted(Tp.bases(), key=str)
[Basis (e_r,e_ph) on the Tangent space at Point p on the Euclidean plane E^2,
Basis (e_x,e_y) on the Tangent space at Point p on the Euclidean plane E^2]
Levi-Civita connection¶
The Levi-Civita connection associated to the Euclidean metric \(g\) is:
sage: nabla = g.connection()
sage: nabla
Levi-Civita connection nabla_g associated with the Riemannian metric g on the Euclidean plane E^2
The corresponding Christoffel symbols with respect to the polar coordinates are:
sage: g.christoffel_symbols_display()
Gam^r_ph,ph = -r
Gam^ph_r,ph = 1/r
By default, only nonzero and nonredundant values are displayed (for instance \(\Gamma^\phi_{\ \, \phi r}\) is skipped, since it can be deduced from \(\Gamma^\phi_{\ \, r \phi}\) by symmetry on the last two indices).
The Christoffel symbols with respect to the Cartesian coordinates are all zero:
sage: g.christoffel_symbols_display(chart=cartesian, only_nonzero=False)
Gam^x_xx = 0
Gam^x_xy = 0
Gam^x_yy = 0
Gam^y_xx = 0
Gam^y_xy = 0
Gam^y_yy = 0
\(\nabla_g\) is the connection involved in differential operators:
sage: grad(F) == nabla(F).up(g)
True
sage: nabla(F) == grad(F).down(g)
True
sage: div(v) == nabla(v).trace()
True
sage: div(w) == nabla(w).trace()
True
sage: laplacian(F) == nabla(nabla(F).up(g)).trace()
True
sage: laplacian(w) == nabla(nabla(w).up(g)).trace(1,2)
True