
Sage Installation Guide
Release 9.4

The Sage Development Team

Aug 24, 2021

CONTENTS

1 Linux package managers 3

2 Install from Pre-built Binaries 5
2.1 Download Guide . 5
2.2 Linux . 5
2.3 macOS . 6
2.4 Microsoft Windows (Cygwin) . 6

3 Install from conda-forge 7

4 Install from Source Code 9
4.1 Supported platforms . 9
4.2 Prerequisites . 10
4.3 Additional software . 18
4.4 Step-by-step installation procedure . 20
4.5 Make targets . 25
4.6 Environment variables . 25
4.7 Installation in a Multiuser Environment . 30

5 Launching SageMath 33
5.1 Using a Jupyter Notebook remotely . 33
5.2 WSL Post-installation steps . 34
5.3 Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or JupyterLab installation . . 35

6 Troubleshooting 37

Index 39

i

ii

Sage Installation Guide, Release 9.4

You can install SageMath either from a package manager, a pre-built binary tarball or from its sources.

Installing SageMath from your distribution package manager is the preferred and fastest solution (dependencies will
be automatically taken care of and SageMath will be using your system Python). It is the case at least for the following
GNU/Linux distributions: Debian version >= 9, Ubuntu version >= 18.04, Arch Linux, and NixOS. If you are in this
situation, see Linux package managers.

If your operating system does not provide SageMath, you can also use a pre-built binary. See the section Install from
Pre-built Binaries.

Or you could install the sage package from the conda-forge project. See the section Install from conda-forge.

By compiling SageMath from its sources you might be able to run a slightly more up-to-date version. You can also
modify it and contribute back to the project. Compiling SageMath might take up to 4 hours on a recent computer. To
build SageMath from source, go to the section Install from Source Code.

Note that there are other alternatives to use SageMath that completely avoid installing it:

• the Sage Debian Live USB key: a full featured USB key that contains a whole Linux distribution including
SageMath. This might be an option if you fail installing SageMath on your operating system.

• CoCalc: an online service that provides SageMath and many other tools.

• Sage Cell Server: an online service for elementary SageMath computations.

• Docker images: SageMath in a container for more experienced users.

The rest of this document describes how to install SageMath from pre-built binaries and from sources.

CONTENTS 1

https://conda-forge.org/
https://sagedebianlive.metelu.net/
https://cocalc.com/
https://sagecell.sagemath.org/
https://hub.docker.com/r/sagemath/sagemath/

Sage Installation Guide, Release 9.4

2 CONTENTS

CHAPTER

ONE

LINUX PACKAGE MANAGERS

On GNU/Linux Debian version >= 9, Ubuntu version >= 18.04, Arch Linux there are three packages to install

• sagemath (for the binaries)

• sagemath-jupyter (for the browser interface)

• and the documentation which is called sagemath-doc-en on Debian/Ubuntu and sagemath-doc on Arch
Linux.

Gentoo users might want to give a try to sage-on-gentoo.

3

https://github.com/cschwan/sage-on-gentoo

Sage Installation Guide, Release 9.4

4 Chapter 1. Linux package managers

CHAPTER

TWO

INSTALL FROM PRE-BUILT BINARIES

Installation from a pre-built binary tarball is an easy and fast way to install Sage. Note that on GNU/Linux a preferred
way is to use your package manager (e.g. apt, pacman, yum).

In all cases, we assume that you have a computer with at least 4 GB of free disk space.

2.1 Download Guide

Not sure what to download? Just follow these steps.

• Determine your operating system (Windows, Linux or macOS).

• According to your operating system, go to the appropriate Download section of the SageMath website.

• Choose a download server (aka mirror) that is close to your location.

• Download the binary that is appropriate to your system. Depending on your operating system you might need
additional information such as your CPU type (e.g. 64 bits or 32 bits) and your operating system version. If
you use macOS you will have the choice between a tarball (whose names ends with tar.bz2) and two kinds of
mountable disk images (whose names end with app.dmg and simply .dmg). Except for Windows, the naming
scheme of the files is always sage-VERSION-OS-CPU.EXTENSIONwhere EXTENSION can be tar.gz, tar.bz2,
dmg or app.dmg.

• Then choose the appropriate section below corresponding to your situation.

2.2 Linux

Make sure that you have an SSL library installed (OpenSSL recommended).

It is highly recommended that you have LaTeX installed. If you want to view animations, you should install either
ImageMagick or ffmpeg. ImageMagick or dvipng is also used for displaying some LaTeX output in the notebooks.

Choose an appropriate directory where to install Sage. If you have administrator rights on your computer a good choice
is /opt otherwise it can be anywhere in your home directory. Avoid spaces and Unicode characters in the path name.

Next, download the latest binary tarball available (see “Download Guide” above). The tarball name should end with
.tar.gz or .tar.bz2. If you want to use the .dmg or .app.dmg for macOS switch to the next section.

Unpack the tarball where you intend to install Sage. This is done from the command line using the tar program. Next,
to launch Sage, go to the SageMath directory and run the program that is called sage (via ./sage on the command
line).

The first time you run Sage, you will see a message like

5

http://www.sagemath.org/

Sage Installation Guide, Release 9.4

Rewriting paths for your new installation directory
===

This might take a few minutes but only has to be done once.

patching ... (long list of files)

At this point, you can no longer move your Sage installation and expect Sage to function.

Once you are able to launch Sage you might want to create a shortcut so that sage just works from the command line.
To do so simply use the ln program from the command line:

$ sudo ln -s /path/to/SageMath/sage /usr/local/bin/sage

where /path/to/SageMath/sage is the actual path to your SageMath installation.

2.3 macOS

On macOS there are two possible binaries for each version. They can be recognized by their suffixes, but their actual
contents are identical.

• tar.bz2: a binary tarball

• dmg: a compressed image of the binary

This section explains how to install from dmg. For the installation of the binary tarball tar.bz2 just follow the steps
of the Linux installation.

After downloading the file, double click on the dmg file to mount it, which will take some time. Then drag the folder
SageMath that just appeared to /Applications/. You might want to have shortcuts so that sage in the console simply
works out of the box. For that purpose, follows the steps at the end of the section “Linux”.

Alternative macOS binaries are available here. These have been signed and notarized, eliminating various errors caused
by Apple’s gatekeeper antimalware protections.

2.4 Microsoft Windows (Cygwin)

SageMath on Windows requires a 64-bit Windows (which is likely to be the case on a modern computer). If you
happen to have a 32-bit Windows, you can consider the alternatives mentioned at the end of Welcome to the SageMath
Installation Guide.

To install SageMath on Windows, just download the installer (see the above “Download Guide” section) and run it.

6 Chapter 2. Install from Pre-built Binaries

https://github.com/3-manifolds/Sage_macOS/releases/

CHAPTER

THREE

INSTALL FROM CONDA-FORGE

SageMath can be installed via Conda from the conda-forge conda channel.

This works on Linux and macOS on x86_64 processors, and on Linux on aarch64 processors (using Miniforge).

This requires a working Conda installation: either Miniforge, Miniconda or Anaconda. If you don’t have one yet, we
recommend installing Miniforge.

Miniforge uses conda-forge as the default channel. If you are using Miniconda or Anaconda, set it up to use conda-forge:

• Add the conda-forge channel: conda config --add channels conda-forge

• Change channel priority to strict: conda config --set channel_priority strict

Optionally, use mamba which uses a faster dependency solver than 𝑐𝑜𝑛𝑑𝑎.

conda install mamba

Create a new conda environment containing SageMath, either with mamba or conda:

mamba create -n sage sage python=X
conda create -n sage sage python=X

where X is version of Python, e.g. 3.8.

To use Sage from there,

• Enter the new environment: conda activate sage

• Start SageMath: sage

Instructions for using Conda for SageMath development are on the Conda page of the Sage wiki.

7

https://conda-forge.org
https://github.com/conda-forge/miniforge#miniforge3
https://github.com/mamba-org/mamba
https://wiki.sagemath.org/Conda

Sage Installation Guide, Release 9.4

8 Chapter 3. Install from conda-forge

CHAPTER

FOUR

INSTALL FROM SOURCE CODE

Table of contents

• Install from Source Code

– Supported platforms

– Prerequisites

– Additional software

– Step-by-step installation procedure

– Make targets

– Environment variables

– Installation in a Multiuser Environment

More familiarity with computers may be required to build Sage from the source code. If you do have all the pre-requisite
tools, the process should be completely painless, basically consisting in extracting the source tarball and typing make.
It can take your computer a while to build Sage from the source code, although the procedure is fully automated and
should need no human intervention.

Building Sage from the source code has the major advantage that your install will be optimized for your particular
computer and should therefore offer better performance and compatibility than a binary install. Moreover, it offers you
full development capabilities: you can change absolutely any part of Sage or the programs on which it depends, and
recompile the modified parts.

Download the Sage source code or get it from the git repository. Note: if you are installing Sage for development, you
should rather follow the instructions in The Sage Developer’s Guide.

It is also possible to download a binary distribution for some operating systems, rather than compiling from source.

4.1 Supported platforms

Sage runs on all major Linux distributions, macOS , and Windows (via the Cygwin Linux API layer).

Other installation options for Windows are using the Windows Subsystem for Linux (WSL), or with the aid of a virtual
machine.

9

https://en.wikipedia.org/wiki/Source_code
https://www.sagemath.org/download-source.html
https://github.com/sagemath/sage
https://doc.sagemath.org/html/en/developer/walk_through.html#chapter-walkthrough
https://www.sagemath.org/download.html
https://en.wikipedia.org/wiki/Linux
https://www.apple.com/macosx/
https://cygwin.com/
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine

Sage Installation Guide, Release 9.4

4.2 Prerequisites

4.2.1 General requirements

This section details the technical prerequisites needed on all platforms. See also the System-specific requirements below.

Disk space and memory

Your computer comes with at least 6 GB of free disk space. It is recommended to have at least 2 GB of RAM, but you
might get away with less (be sure to have some swap space in this case).

Command-line tools

In addition to standard POSIX utilities and the bash shell, the following standard command-line development tools
must be installed on your computer:

• A C/C++ compiler: Since SageMath builds its own GCC if needed, a wide variety of C/C++ compilers is
supported. Many GCC versions work, from as old as version 4.8 (but we recommend at least 5.1) to the most
recent release. Clang also works. See also Using alternative compilers.

• make: GNU make, version 3.80 or later. Version 3.82 or later is recommended.

• m4: GNU m4 1.4.2 or later (non-GNU or older versions might also work).

• perl: version 5.8.0 or later.

• ar and ranlib: can be obtained as part of GNU binutils.

• tar: GNU tar version 1.17 or later, or BSD tar.

• python: Python 3.4 or later, or Python 2.7. (This range of versions is a minimal requirement for internal purposes
of the SageMath build system, which is referred to as sage-bootstrap-python.)

Other versions of these may work, but they are untested.

Libraries

Some Sage components (and among them, most notably, Python) “use the OpenSSL library for added performance if
made available by the operating system” (literal quote from the Python license). Testing has proved that:

• Sage can be successfully built against other SSL libraries (at least GnuTLS).

• Sage’s -pip facility (used to install some Sage packages) is disabled when Sage is compiled against those li-
braries.

Furthermore, the Sage license mention that the hashlib library (used in Sage) uses OpenSSL.

Therefore, the OpenSSL library is recommended. However, Sage’s license seems to clash with OpenSSL license, which
makes the distribution of OpenSSL along with Sage sources dubious. However, there is no problem for Sage using a
systemwide-installed OpenSSL library.

In any case, you must install systemwide your chosen library and its development files.

10 Chapter 4. Install from Source Code

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Sage Installation Guide, Release 9.4

Fortran and compiler suites

Sage installation also needs a Fortran compiler. It is determined automatically whether Sage’s GCC package, or just its
part containing Fortran compiler gfortran needs to be installed. This can be overwritten by running ./configure
with option --without-system-gcc.

Officially we support gfortran from GNU Compiler Collection (GCC). If C and C++ compilers also come from there
(i.e., gcc and g++), their versions should match. Alternatively, one may use C and C++ compilers from Clang: a
C language family frontend for LLVM, and thus matching versions of clang, clang++ , along with a recent gfortran.
(Flang (or other LLVM-based Fortran compilers) are not officially supported, however it is possible to to build Sage
using flang, with some extra efforts needed to set various flags; this is work in progress at the moment (May 2019)).

Therefore, if you plan on using your own GCC compilers, then make sure that their versions match.

To force using specific compilers, set environment variables CC, CXX, and FC (for C, C++, and Fortran compilers,
respectively) to the desired values, and run ./configure. For example, ./configure CC=clang CXX=clang++
FC=gfortran will configure Sage to be built with Clang C/C++ compilers and Fortran compiler gfortran.

Alternatively, Sage includes a GCC package, so that C, C++ and Fortran compilers will be built when the build system
detects that it is needed, e.g., non-GCC compilers, or versions of the GCC compilers known to miscompile some
components of Sage, or simply a missing Fortran compiler. In any case, you always need at least a C/C++ compiler to
build the GCC package and its prerequisites before the compilers it provides can be used.

Note that you can always override this behavior through the configure options --without-system-gcc and
--with-system-gcc, see Using alternative compilers.

There are some known problems with old assemblers, in particular when building the ecm and fflas_ffpack pack-
ages. You should ensure that your assembler understands all instructions for your processor. On Linux, this means you
need a recent version of binutils; on macOS you need a recent version of Xcode.

Python for venv

By default, Sage will try to use system’s 𝑝𝑦𝑡ℎ𝑜𝑛3 to set up a virtual environment, a.k.a. venv rather than building a
Python 3 installation from scratch. Use the configure option --without-system-python3 in case you want Python
3 built from scratch.

Sage will accept versions 3.7.x to 3.9.x.

You can also use --with-python=/path/to/python3_binary to tell Sage to use /path/to/python3_binary to
set up the venv. Note that setting up venv requires a number of Python modules to be available within the Python in
question. Currently, for Sage 9.2, these modules are as follows: sqlite3, ctypes, math, hashlib, crypt, readline, socket,
zlib, distutils.core - they will be checked for by configure.

Other notes

After extracting the Sage tarball, the subdirectory upstream contains the source distributions for everything on which
Sage depends. If cloned from a git repository, the upstream tarballs will be downloaded, verified, and cached as part
of the Sage installation process. We emphasize that all of this software is included with Sage, so you do not have to
worry about trying to download and install any one of these packages (such as Python, for example) yourself.

When the Sage installation program is run, it will check that you have each of the above-listed prerequisites, and inform
you of any that are missing, or have unsuitable versions.

4.2. Prerequisites 11

https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://docs.python.org/3.7/library/venv.html

Sage Installation Guide, Release 9.4

4.2.2 System-specific requirements

On macOS, there are various developer tools needed which may require some registration on Apple’s developer site;
see macOS prerequisite installation.

On Redhat-derived systems not all perl components are installed by default and you might have to install the
perl-ExtUtils-MakeMaker package.

On Cygwin, the lapack and liblapack-devel packages are required to provide ATLAS support as the Sage package
for ATLAS is not built by default.

4.2.3 Installing prerequisites

To check if you have the above prerequisites installed, for example perl, type:

$ command -v perl

or:

$ which perl

on the command line. If it gives an error (or returns nothing), then either perl is not installed, or it is installed but not
in your PATH.

Linux recommended installation

On Linux systems (e.g., Ubuntu, Redhat, etc), ar and ranlib are in the binutils package. The other programs are
usually located in packages with their respective names. Assuming you have sufficient privileges, you can install the
binutils and other necessary/standard components. The lists provided below are longer than the minimal prerequi-
sites, which are basically binutils, gcc/clang, make, tar, but there is no real need to build compilers and other
standard tools and libraries on a modern Linux system, in order to be able to build Sage. If you do not have the priv-
ileges to do this, ask your system administrator to do this, or build the components from source code. The method of
installing additional software varies from distribution to distribution, but on a Debian based system (e.g. Ubuntu or
Mint), you would use apt-get.

On Debian (“buster” or newer) or Ubuntu (“bionic” or newer):

$ sudo apt-get install bc binutils bzip2 ca-certificates cliquer cmake curl ecl eclib-
→˓tools fflas-ffpack flintqs g++ g++ gcc gcc gfan gfortran glpk-utils gmp-ecm lcalc␣
→˓libatomic-ops-dev libboost-dev libbraiding-dev libbrial-dev libbrial-groebner-dev␣
→˓libbz2-dev libcdd-dev libcdd-tools libcliquer-dev libcurl4-openssl-dev libec-dev␣
→˓libecm-dev libffi-dev libflint-arb-dev libflint-dev libfreetype6-dev libgc-dev libgd-
→˓dev libgf2x-dev libgiac-dev libgivaro-dev libglpk-dev libgmp-dev libgsl-dev libhomfly-
→˓dev libiml-dev liblfunction-dev liblrcalc-dev liblzma-dev libm4rie-dev libmpc-dev␣
→˓libmpfi-dev libmpfr-dev libncurses5-dev libntl-dev libopenblas-dev libpari-dev␣
→˓libpcre3-dev libplanarity-dev libppl-dev libpython3-dev libreadline-dev librw-dev␣
→˓libsqlite3-dev libssl-dev libsuitesparse-dev libsymmetrica2-dev libz-dev libzmq3-dev␣
→˓libzn-poly-dev m4 make nauty openssl palp pari-doc pari-elldata pari-galdata pari-
→˓galpol pari-gp2c pari-seadata patch perl pkg-config planarity ppl-dev python3 python3␣
→˓python3-distutils r-base-dev r-cran-lattice sqlite3 sympow tachyon tar tox xcas xz-
→˓utils yasm

12 Chapter 4. Install from Source Code

https://en.wikipedia.org/wiki/PATH_%28variable%29
https://www.gnu.org/software/binutils/
https://www.debian.org/
https://www.ubuntu.com/
https://www.linuxmint.com/
https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

Sage Installation Guide, Release 9.4

Warning: Note: in this documentation, commands like these are autogenerated. They may as such include
duplications. The duplications are certainly not necessary for the commands to function properly, but they don’t
cause any harm, either.

On Fedora / Redhat / CentOS:

$ sudo yum install --setopt=tsflags= L-function L-function-devel R R-devel arb arb-
→˓devel binutils boost-devel brial brial-devel bzip2 bzip2-devel cddlib cliquer cliquer-
→˓devel cmake curl diffutils ecl eclib eclib-devel fflas-ffpack-devel findutils flint␣
→˓flint-devel gc gc-devel gcc gcc gcc-c++ gcc-c++ gcc-gfortran gcc-gfortran gd gd-devel␣
→˓gf2x gf2x-devel gfan giac giac-devel givaro givaro-devel glpk glpk-devel glpk-utils␣
→˓gmp gmp-devel gmp-ecm gmp-ecm-devel gsl gsl-devel iml iml-devel libatomic_ops␣
→˓libatomic_ops-devel libbraiding libcurl-devel libffi libffi-devel libfplll libfplll-
→˓devel libhomfly-devel libmpc libmpc-devel lrcalc-devel m4 m4ri-devel m4rie-devel make␣
→˓mpfr-devel nauty ncurses-devel ntl-devel openblas-devel openssl openssl-devel palp␣
→˓pari-devel pari-elldata pari-galdata pari-galdata pari-galpol pari-gp pari-seadata␣
→˓patch pcre pcre-devel perl perl-ExtUtils-MakeMaker perl-IPC-Cmd pkg-config planarity␣
→˓planarity-devel ppl ppl-devel python3 python3-devel readline-devel rw-devel sqlite␣
→˓sqlite-devel suitesparse suitesparse-devel symmetrica-devel sympow tachyon tachyon-
→˓devel tar tox which xz xz-devel yasm zeromq zeromq-devel zlib-devel zn_poly zn_poly-
→˓devel

On Arch Linux:

$ sudo pacman -S arb bc binutils boost brial cblas cddlib cmake ecl eclib fflas-
→˓ffpack flintqs gc gcc gcc gcc-fortran gd gf2x gfan giac glpk gsl iml lapack lcalc␣
→˓libatomic_ops libbraiding libgiac libhomfly lrcalc m4 m4ri m4rie make nauty openblas␣
→˓openssl palp pari pari-elldata pari-galdata pari-galdata pari-galpol pari-seadata pari-
→˓seadata patch perl planarity ppl python r rankwidth readline sqlite3 suitesparse␣
→˓symmetrica sympow tachyon tar which zn_poly

(These examples suppose that you choose to use a systemwide OpenSSL library.)

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on trac ticket #27330, install on Debian (“buster” or newer) or Ubuntu (“bionic” or
newer):

$ sudo apt-get install coinor-cbc coinor-libcbc-dev git graphviz libfile-slurp-perl␣
→˓libigraph-dev libisl-dev libjson-perl libmongodb-perl libnauty-dev libperl-dev libsvg-
→˓perl libterm-readkey-perl libterm-readline-gnu-perl libterm-readline-gnu-perl libxml-
→˓libxslt-perl libxml-writer-perl libxml2-dev libxml2-dev llvm-toolchain lrslib ninja-
→˓build pari-gp2c

On Fedora / Redhat / CentOS:

$ sudo yum install clang coin-or-Cbc coin-or-Cbc-devel coxeter coxeter-devel coxeter-
→˓tools git graphviz igraph igraph-devel isl-devel libnauty-devel libxml2-devel lrslib␣
→˓ninja-build pari-galpol pari-seadata perl-ExtUtils-Embed perl-File-Slurp perl-JSON␣
→˓perl-MongoDB perl-Term-ReadLine-Gnu perl-Term-ReadLine-Gnu perl-XML-LibXML perl-XML-
→˓LibXSLT perl-XML-Writer

On Arch Linux:

4.2. Prerequisites 13

https://trac.sagemath.org/27330

Sage Installation Guide, Release 9.4

$ sudo pacman -S clang coin-or-cbc coxeter graphviz igraph libxml2 lrs ninja pari-
→˓elldata pari-galpol pari-seadata perl-term-readline-gnu

On other Linux systems, you might use rpm, yum, or other package managers.

macOS prerequisite installation

On macOS systems, you need a recent version of Command Line Tools. It provides all the above requirements.

If you have already installed Xcode (which at the time of writing is freely available in the Mac App Store, or through
https://developer.apple.com/downloads/ provided you registered for an Apple Developer account), you can install the
command line tools from there as well.

• With OS X Mavericks or Yosemite, run the command xcode-select --install from a Terminal window and
click “Install” in the pop-up dialog box.

• Using OS X Mountain Lion or earlier, run Xcode, open its “Downloads” preference pane and install the command
line tools from there.

• On pre-Lion macOS systems, the command line tools are not available as a separate download and you have to
install the full-blown Xcode supporting your system version.

If you have not installed Xcode you can get these tools as a relatively small download, but it does require a registration.

• First, you will need to register as an Apple Developer at https://developer.apple.com/register/.

• Having done so, you should be able to download it for free at https://developer.apple.com/downloads/index.
action?=command%20line%20tools

• Alternately, https://developer.apple.com/opensource/ should have a link to Command Line Tools.

macOS recommended installation

Although Sage can in theory build its own version of gfortran, this can take a while, and the process fails on some
recent versions of OS X. So instead you can install your own copy. One advantage of this is that you can install it once,
and it will get used every time you build Sage, rather than building gfortran every time.

One way to do that is with the Homebrew package manager. Install Homebrew as their web page describes, and then
the command

$ brew install gcc

will install Homebrew’s gcc package, which includes gfortran. Sage will also use other Homebrew packages, if they
are present. You can install the following:

$ brew install arb bdw-gc boost bzip2 cmake curl ecl flint fplll freetype gcc gcc gd␣
→˓glpk gmp gpatch gsl libatomic_ops libffi libiconv libmpc libpng mpfi mpfr mpir nauty␣
→˓ncurses ntl openblas openssl pcre pkg-config ppl python3 r readline sqlite suite-
→˓sparse tox xz yasm zeromq zlib

Some Homebrew packages are installed “keg-only,” meaning that they are not available in standard paths. To make
them accessible when building Sage, run

$ source SAGE_ROOT/.homebrew-build-env

14 Chapter 4. Install from Source Code

https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/xcode/
https://developer.apple.com/downloads/
https://developer.apple.com/xcode/
https://developer.apple.com/register/
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/opensource/
https://brew.sh

Sage Installation Guide, Release 9.4

(replacing SAGE_ROOT by Sage’s home directory). You can add a command like this to your shell profile if you want
the settings to persist between shell sessions.

Some additional optional packages are taken care of by:

$ brew install cbc git graphviz igraph isl libxml2 llvm nauty ninja

Cygwin prerequisite installation

Sage can be built only on the 64-bit version of Cygwin. See README.md for the most up-to-date instructions for building
Sage on Cygwin.

Although it is possible to install Sage’s dependencies using the Cygwin graphical installer, it is recommended to install
the apt-cyg command-line package installer, which is used for the remainder of these instructions. To run apt-cyg,
you must have already installed (using the graphical installer) the following packages at a minimum:

bzip2 coreutils gawk gzip tar wget

With the exception of wget most of these are included in the default package selection when you install Cygwin. Then,
to install apt-cyg run:

$ curl -OL https://rawgit.com/transcode-open/apt-cyg/master/apt-cyg
$ install apt-cyg /usr/local/bin
$ rm -f apt-cyg

To install the current set of system packages known to work for building Sage, run:

$ apt-cyg install R binutils bzip2 cddlib-devel cddlib-tools cmake curl findutils gcc-
→˓core gcc-core gcc-fortran gcc-fortran gcc-g++ gcc-g++ glpk libatomic_ops-devel␣
→˓libboost-devel libbz2-devel libcrypt-devel libcurl-devel libffi-devel libflint-devel␣
→˓libfreetype-devel libgc-devel libgd-devel libglpk-devel libgmp-devel libgsl-devel␣
→˓libiconv-devel libiconv-devel liblapack-devel liblzma-devel libmpc-devel libmpfr-devel␣
→˓libncurses-devel libntl-devel libopenblas libpcre-devel libreadline-devel libsqlite3-
→˓devel libssl-devel libsuitesparseconfig-devel libtirpc-devel libzmq-devel m4 make␣
→˓patch perl perl-ExtUtils-MakeMaker python37 python37-urllib3 python38-devel tar tox␣
→˓which xz yasm zlib-devel

Optional packages that are also known to be installable via system packages include:

$ apt-cyg install clang git graphviz libisl-devel libxml2-devel ninja perl-Term-
→˓ReadLine-Gnu

Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation

Sage can be installed onto linux running on Windows Subsystem for Linux (WSL). These instructions describe a fresh
install of Ubuntu 20.10, but other distibutions or installation methods should work too, though have not been tested.

• Enable hardware-assisted virtualization in the EFI or BIOS of your system. Refer to your system (or motherboard)
maker’s documentation for instructions on how to do this.

• Set up WSL by following the official WSL setup guide. Be sure to do the steps to install WSL2 and set it as
default.

• Go to the Microsoft Store and install Ubuntu.

• Start Ubuntu from the start menu. Update all packages to the latest version.

4.2. Prerequisites 15

https://github.com/transcode-open/apt-cyg
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Sage Installation Guide, Release 9.4

• Reboot the all running WSL instances one of the following ways:

– Open Windows Services and restart the LxssManager service.

– Open the Command Prompt or Powershell and enter this command:

wsl --shutdown

• Upgrade to the Ubuntu 20.10. This step will not be necessary once Ubuntu 20.10 is available in the Microsoft
Store.

From this point on, follow the instructions in the Linux recommended installation section.

When the installation is complete, you may be interested in WSL Post-installation steps.

Other platforms

On Solaris, you would use pkgadd and on OpenSolaris ipf to install the necessary software.

On other systems, check the documentation for your particular operating system.

Using conda to provide system dependencies

If Conda is installed (check by typing conda info), there are two ways to prepare for installing SageMath from source:

• If you are using a git checkout:

$./bootstrap

• Create a new empty environment and activate:

$ conda create -n sage-build
$ conda activate sage-build

• Install standard packages recognized by sage’s spkg-configure mechanism:

$ conda env update --file environment.yml -n sage-build

• Or install all standard and optional packages recognized by sage:

$ conda env update --file environment-optional.yml -n sage-build

• Then SageMath will be built using the compilers provided by Conda:

$./bootstrap
$./configure --prefix=$CONDA_PREFIX
$ make

16 Chapter 4. Install from Source Code

https://linuxconfig.org/how-to-upgrade-ubuntu-to-20-10

Sage Installation Guide, Release 9.4

Using conda to provide all SPKGs

Note that this is an experimental feature and may not work as intended.

• If you are using a git checkout:

$./bootstrap

• Create a new empty environment and activate:

$ conda create -n sage
$ conda activate sage

• Install standard packages:

$ conda env update --file src/environment.yml -n sage

• Or install all standard and optional packages:

$ conda env update --file src/environment-optional.yml -n sage

• Then SageMath will be built using the compilers provided by Conda:

$./bootstrap
$./configure --prefix=$CONDA_PREFIX
$ cd src
$ python setup.py install

Note that make is not used at all. All dependencies (including all Python packages) are provided by conda.

Thus, you will get a working version of Sage much faster. However, note that this will invalidate the use of Sage-the-
distribution commands such as sage -i because sage-the-distribution does not know about the dependencies unlike
in the previous section where it did.

Notes on using conda

If you don’t want conda to be used by sage, deactivate conda (for the current shell session).

• Type:

$ conda deactivate

• Repeat the command until conda info shows:

$ conda info

active environment : None
...

Then SageMath will be built either using the compilers provided by the operating system, or its own
compilers.

4.2. Prerequisites 17

Sage Installation Guide, Release 9.4

4.2.4 Specific notes for make and tar

On macOS, the system-wide BSD tar supplied will build Sage, so there is no need to install the GNU tar.

On Solaris or OpenSolaris, the Sun/Oracle versions of make and tar are unsuitable for building Sage. Therefore, you
must have the GNU versions of make and tar installed and they must be the first make and tar in your PATH.

On Solaris 10, a version of GNU makemay be found at /usr/sfw/bin/gmake, but you will need to copy it somewhere
else and rename it to make. The same is true for GNU tar; a version of GNU tar may be found at /usr/sfw/bin/
gtar, but it will need to be copied somewhere else and renamed to tar. It is recommended to create a directory
$HOME/bins-for-sage and to put the GNU versions of tar and make in that directory. Then ensure that $HOME/
bins-for-sage is first in your PATH. That’s because Sage also needs /usr/ccs/bin in your PATH to execute programs
like ar and ranlib, but /usr/ccs/bin has the Sun/Oracle versions of make and tar in it.

If you attempt to build Sage on AIX or HP-UX, you will need to install both GNU make and GNU tar.

4.2.5 Using alternative compilers

Sage developers tend to use fairly recent versions of GCC. Nonetheless, the Sage build process on Linux should succeed
with any reasonable C/C++ compiler; (we do not recommend GCC older than version 5.1). This is because Sage will
build GCC first (if needed) and then use that newly built GCC to compile Sage.

If you don’t want this and want to try building Sage with a different set of compilers, you need to pass Sage’s ./
configure compiler names, via environment variables CC, CXX, and FC, for C, C++, and Fortran compilers, respec-
tively, e.g. if you C compiler is clang, your C++ compiler is clang++, and your Fortran compiler is flang then you
would need to run:

$ CC=clang CXX=clang++ FC=flang ./configure

before running make. It is recommended that you inspect the output of ./configure in order to check that Sage will
not try to build GCC. Namely, there should be lines like:

gcc-7.2.0 will not be installed (configure check)
...
gfortran-7.2.0 will not be installed (configure check)

indicating that Sage will not attempt to build gcc/g++/gfortran.

If you are interested in working on support for commercial compilers from HP, IBM, Intel, Sun/Oracle, etc, please
email the sage-devel mailing list at https://groups.google.com/group/sage-devel.

4.3 Additional software

4.3.1 Recommended programs

The following programs are recommended. They are not strictly required at build time or at run time, but provide
additional capabilities:

• dvipng.

• ffmpeg.

• ImageMagick.

• LaTeX: highly recommended.

18 Chapter 4. Install from Source Code

http://docs.hp.com/en/5966-9844/ch01s03.html
http://www-01.ibm.com/software/awdtools/xlcpp/
http://software.intel.com/en-us/articles/intel-compilers/
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
https://groups.google.com/group/sage-devel

Sage Installation Guide, Release 9.4

It is highly recommended that you have LaTeX installed, but it is not required. The most popular packaging is TeX
Live, which can be installed following the directions on their web site. On Linux systems you can alternatively install
your distribution’s texlive packages:

$ sudo apt-get install texlive # debian
$ sudo yum install texlive # redhat

or similar commands. In addition to the base TeX Live install, you may need some optional TeX Live packages, for
example country-specific babel packages for the localized Sage documentation.

If you don’t have either ImageMagick or ffmpeg, you won’t be able to view animations. ffmpeg can produce animations
in more different formats than ImageMagick, and seems to be faster than ImageMagick when creating animated GIFs.
Either ImageMagick or dvipng is used for displaying some LaTeX output in the Sage notebook.

On Debian/Ubuntu, the following system packages are recommended.

• texlive-generic-extra (to generate pdf documentation)

• texlive-xetex (to convert Jupyter notebooks to pdf)

• latexmk (to generate pdf documentation)

• pandoc (to convert Jupyter notebooks to pdf)

• dvipng (to render text with LaTeX in Matplotlib)

• default-jdk (to run the Jmol 3D viewer from the console and generate images for 3D plots in the documenta-
tion)

• ffmpeg (to produce animations)

• libavdevice-dev (to produce animations)

4.3.2 Notebook additional features

attention: Sage’s notebook is deprecated, and notebook() command has been removed. Use Jupyter notebook
instead

By default, the Sage notebook uses the HTTP protocol when you type the command notebook(). To run the notebook
in secure mode by typing notebook(secure=True)which uses the HTTPS protocol, or to use OpenID authentication,
you need to follow specific installation steps described in Building the notebook with SSL support.

Although all necessary components are provided through Sage optional packages, i.e., even if you choose not to install
a systemwide version of OpenSSL, you can install a local (Sage_specific) version of OpenSSL by using Sage’s openssl
package and running sage -i openssl as suggested in Building the notebook with SSL support (this requires an In-
ternet connection). Alternatively, you might prefer to install OpenSSL and the OpenSSL development headers globally
on your system, as described above.

Finally, if you intend to distribute the notebook load onto several Sage servers, you will surely want to setup an SSH
server and generate SSH keys. This can be achieved using OpenSSH.

On Linux systems, the OpenSSH server, client and utilities are usually provided by the openssh-server and openssh-
client packages and can be installed using:

$ sudo apt-get install openssh-server openssh-client

or similar commands.

4.3. Additional software 19

https://en.wikipedia.org/wiki/LaTeX
https://www.tug.org/texlive/
https://www.tug.org/texlive/
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/OpenID
https://www.openssl.org
https://en.wikipedia.org/wiki/SSH
https://www.openssh.com/

Sage Installation Guide, Release 9.4

4.3.3 Tcl/Tk

If you want to use Tcl/Tk libraries in Sage, you need to install the Tcl/Tk and its development headers before building
Sage. Sage’s Python will then automatically recognize your system’s install of Tcl/Tk.

On Linux systems, these are usually provided by the tk and tk-dev (or tk-devel) packages which can be installed using:

$ sudo apt-get install tk tk-dev

or similar commands.

If you installed Sage first, all is not lost. You just need to rebuild Sage’s Python and any part of Sage relying on it:

$ sage -f python3 # rebuild Python3
$ make # rebuild components of Sage depending on Python

after installing the Tcl/Tk development libraries as above.

If

sage: import _tkinter
sage: import Tkinter

does not raise an ImportError, then it worked.

4.4 Step-by-step installation procedure

4.4.1 General procedure

Installation from source is (potentially) very easy, because the distribution contains (essentially) everything on which
Sage depends.

Make sure there are no spaces in the path name for the directory in which you build: several of Sage’s components will
not build if there are spaces in the path. Running Sage from a directory with spaces in its name will also fail.

1. Go to https://www.sagemath.org/download-source.html, select a mirror, and download the file sage-x.y.tar.
gz.

This compressed archive file contains the source code for Sage and the source for all programs on which Sage
depends.

Download it into any directory you have write access to, preferably on a fast filesystem, avoiding NFS and the like.
On personal computers, any subdirectory of your HOME directory should do. Note that once you have built Sage
(by running make, as described below), you will not be able to move or rename its directory without breaking
Sage.

2. Extract the archive:

$ tar xvf sage-x.y.tar.gz

This creates a directory sage-x.y.

3. Change into that directory:

$ cd sage-x.y

This is Sage’s home directory. It is also referred to as SAGE_ROOT or the top level Sage directory.

20 Chapter 4. Install from Source Code

https://www.tcl.tk/
https://www.sagemath.org/download-source.html
https://en.wikipedia.org/wiki/Network_File_System

Sage Installation Guide, Release 9.4

4. Optional, but highly recommended: Read the README.md file there.

5. Optional: Set various other environment variables that influence the build process; see Environment variables.

Some environment variables deserve a special mention: CC, CXX and FC; and on macOS, OBJC and OBJCXX.
Those variables defining your compilers can be set at configuration time and their values will be recorded for
further use at runtime. Those initial values are over-ridden if Sage builds its own compiler or they are set to
a different value again before calling Sage. Note that some packages will ignore the compiler settings and use
values deemed safe for that package on a particular OS.

6. Run the configure script to set some options that influence the build process.

• Choose the installation hierarchy (SAGE_LOCAL). The default is the local subdirectory of SAGE_ROOT:

$./configure --prefix=SAGE_LOCAL

Note that in Sage’s build process, make builds and installs (make install is a no-op). Therefore the
installation hierarchy must be writable by the user.

• Other options are available; see:

$./configure --help

7. Start the build process:

$ make

or if your system supports multiprocessing and you want to use several processes to build Sage:

$ MAKE='make -jNUM' make

to tell the make program to run NUM jobs in parallel when building Sage. This compiles Sage and all its depen-
dencies.

Note: macOS allows changing directories without using exact capitalization. Beware of this convenience when
compiling for macOS. Ignoring exact capitalization when changing into SAGE_ROOT can lead to build errors for
dependencies requiring exact capitalization in path names.

Note that you do not need to be logged in as root, since no files are changed outside of the sage-x.y directory. In
fact, it is inadvisable to build Sage as root, as the root account should only be used when absolutely necessary
and mistyped commands can have serious consequences if you are logged in as root. There has been a bug
reported (see trac ticket #9551) in Sage which would have overwritten a system file had the user been logged in
as root.

Typing make performs the usual steps for each Sage’s dependency, but installs all the resulting files into the local
build tree. Depending on the age and the architecture of your system, it can take from a few tens of minutes to
several hours to build Sage from source. On really slow hardware, it can even take a few days to build Sage.

Each component of Sage has its own build log, saved in SAGE_ROOT/logs/pkgs. If the build of Sage fails,
you will see a message mentioning which package(s) failed to build and the location of the log file for each
failed package. If this happens, then paste the contents of these log file(s) to the Sage support newsgroup at
https://groups.google.com/group/sage-support. If the log files are very large (and many are), then don’t paste
the whole file, but make sure to include any error messages. It would also be helpful to include the type of
operating system (Linux, macOS, Solaris, OpenSolaris, Cygwin, or any other system), the version and release
date of that operating system and the version of the copy of Sage you are using. (There are no formal requirements
for bug reports – just send them; we appreciate everything.)

4.4. Step-by-step installation procedure 21

https://trac.sagemath.org/9551
https://groups.google.com/group/sage-support

Sage Installation Guide, Release 9.4

See Make targets for some targets for the make command, Environment variables for additional information on
useful environment variables used by Sage, and Building the notebook with SSL support for additional instruction
on how to build the notebook with SSL support.

8. To start Sage, you can now simply type from Sage’s home directory:

$./sage

You should see the Sage prompt, which will look something like this:

$ sage
+——————————————————————–+
| SageMath version 8.8, Release Date: 2019-06-26 |
| Using Python 3.7.3. Type "help()" for help. |
+——————————————————————–+
sage:

Note that Sage should take well under a minute when it starts for the first time, but can take several minutes if
the file system is slow or busy. Since Sage opens a lot of files, it is preferable to install Sage on a fast filesystem
if possible.

Just starting successfully tests that many of the components built correctly. Note that this should have been
already automatically tested during the build process. If the above is not displayed (e.g., if you get a massive
traceback), please report the problem, e.g., at https://groups.google.com/group/sage-support.

After Sage has started, try a simple command:

sage: 2 + 2
4

Or something slightly more complicated:

sage: factor(2005)
5 * 401

9. Optional, but highly recommended: Test the install by typing ./sage --testall. This runs most examples in
the source code and makes sure that they run exactly as claimed. To test all examples, use ./sage --testall
--optional=all --long; this will run examples that take a long time, and those that depend on optional
packages and software, e.g., Mathematica or Magma. Some (optional) examples will therefore likely fail.

Alternatively, from within $SAGE_ROOT, you can type make test (respectively make ptest) to run all the
standard test code serially (respectively in parallel).

Testing the Sage library can take from half an hour to several hours, depending on your hardware. On slow
hardware building and testing Sage can even take several days!

10. Optional: Check the interfaces to any other software that you have available. Note that each interface calls its
corresponding program by a particular name: Mathematica is invoked by calling math, Maple by calling maple,
etc. The easiest way to change this name or perform other customizations is to create a redirection script in
$SAGE_ROOT/local/bin. Sage inserts this directory at the front of your PATH, so your script may need to use
an absolute path to avoid calling itself; also, your script should pass along all of its arguments. For example, a
maple script might look like:

#!/bin/sh

exec /etc/maple10.2/maple.tty "$@"

11. Optional: There are different possibilities to make using Sage a little easier:

22 Chapter 4. Install from Source Code

https://groups.google.com/group/sage-support
https://www.wolfram.com/mathematica/
https://www.maplesoft.com/

Sage Installation Guide, Release 9.4

• Make a symbolic link from /usr/local/bin/sage (or another directory in your PATH) to $SAGE_ROOT/
sage:

$ ln -s /path/to/sage-x.y/sage /usr/local/bin/sage

Now simply typing sage from any directory should be sufficient to run Sage.

• Copy $SAGE_ROOT/sage to a location in your PATH. If you do this, make sure you edit the line:

#SAGE_ROOT=/path/to/sage-version

at the beginning of the copied sage script according to the direction given there to something like:

SAGE_ROOT=<SAGE_ROOT>

(note that you have to change <SAGE_ROOT> above!). It is best to edit only the copy, not the original.

• For KDE users, create a bash script called sage containing the lines (note that you have to change
<SAGE_ROOT> below!):

#!/usr/bin/env bash

konsole -T "sage" -e <SAGE_ROOT>/sage

make it executable:

$ chmod a+x sage

and put it somewhere in your PATH.

You can also make a KDE desktop icon with this line as the command (under the Application tab of the
Properties of the icon, which you get my right clicking the mouse on the icon).

• On Linux and macOS systems, you can make an alias to $SAGE_ROOT/sage. For example, put something
similar to the following line in your .bashrc file:

alias sage=<SAGE_ROOT>/sage

(Note that you have to change <SAGE_ROOT> above!) Having done so, quit your terminal emulator and
restart it. Now typing sage within your terminal emulator should start Sage.

12. Optional: Install optional Sage packages and databases. Type sage --optional to see a list of them (this
requires an Internet connection), or visit https://www.sagemath.org/packages/optional/. Then type sage -i
<package-name> to automatically download and install a given package.

13. Optional: Run the install_scripts command from within Sage to create GAP, GP, Maxima, Singular, etc.,
scripts in your PATH. Type install_scripts? in Sage for details.

14. Have fun! Discover some amazing conjectures!

4.4. Step-by-step installation procedure 23

https://www.kde.org/
https://www.sagemath.org/packages/optional/

Sage Installation Guide, Release 9.4

4.4.2 Building the notebook with SSL support

Read this section if you are intending to run a Sage notebook server for multiple users.

For security, you may wish users to access the server using the HTTPS protocol (i.e., to run
notebook(secure=True)). You also may want to use OpenID for user authentication. The first of these
requires you to install pyOpenSSL, and they both require OpenSSL.

If you have OpenSSL and the OpenSSL development headers installed on your system, you can install pyOpenSSL by
building Sage and then typing:

$./sage -i pyopenssl

Alternatively, make ssl builds Sage and installs pyOpenSSL at once. Note that these commands require Internet
access.

If you are missing either OpenSSL or OpenSSL’s development headers, you can install a local copy of both into your
Sage installation first. Ideally, this should be done before installing Sage; otherwise, you should at least rebuild Sage’s
Python, and ideally any part of Sage relying on it. The procedure is as follows (again, with a computer connected to
the Internet). Starting from a fresh Sage tarball:

$./sage -i openssl
$ make ssl

And if you’ve already built Sage:

$./sage -i openssl
$./sage -f python3
$ make ssl

The third line will rebuild all parts of Sage that depend on Python; this can take a while.

4.4.3 Rebasing issues on Cygwin

Building on Cygwin will occasionally require “rebasing” dll files. Sage provides some scripts, located in
$SAGE_LOCAL/bin, to do so:

• sage-rebaseall.sh, a shell script which calls Cygwin’s rebaseall program. It must be run within a dash
shell from the SAGE_ROOT directory after all other Cygwin processes have been shut down and needs write-access
to the system-wide rebase database located at /etc/rebase.db.i386, which usually means administrator priv-
ileges. It updates the system-wide database and adds Sage dlls to it, so that subsequent calls to rebaseall will
take them into account.

• sage-rebase.sh, a shell script which calls Cygwin’s rebase program together with the -O/--oblivious
option. It must be run within a shell from SAGE_ROOT directory. Contrary to the sage-rebaseall.sh script,
it neither updates the system-wide database, nor adds Sage dlls to it. Therefore, subsequent calls to rebaseall
will not take them into account.

• sage-rebaseall.bat (respectively sage-rebase.bat), an MS-DOS batch file which calls the
sage-rebaseall.sh (respectively sage-rebase.sh) script. It must be run from a Windows command
prompt, after adjusting SAGE_ROOT to the Windows location of Sage’s home directory, and, if Cygwin is
installed in a non-standard location, adjusting CYGWIN_ROOT as well.

Some systems may encounter this problem frequently enough to make building or testing difficult. If executing the
above scripts or directly calling rebaseall does not solve rebasing issues, deleting the system-wide database and then
regenerating it from scratch, e.g., by executing sage-rebaseall.sh, might help.

Finally, on Cygwin, one should also avoid the following:

24 Chapter 4. Install from Source Code

https://pyopenssl.org/

Sage Installation Guide, Release 9.4

• building in home directories of Windows domain users;

• building in paths with capital letters (see trac ticket #13343, although there has been some success doing so).

4.5 Make targets

To build Sage from scratch, you would typically execute make in Sage’s home directory to build Sage and its HTML
documentation. The make command is pretty smart, so if your build of Sage is interrupted, then running make again
should cause it to pick up where it left off. The make command can also be given options, which control what is built
and how it is built:

• make build builds Sage: it compiles all of the Sage packages. It does not build the documentation.

• make doc builds Sage’s documentation in HTML format. Note that this requires that Sage be built first, so it
will automatically run make build first. Thus, running make doc is equivalent to running make.

• make doc-pdf builds Sage’s documentation in PDF format. This also requires that Sage be built first, so it will
automatically run make build.

• make doc-html-no-plot builds Sage’s documentation in html format but skips the inclusion of graphics auto-
generated using the .. PLOT markup and the sphinx_plot function. This is primarily intended for use when
producing certain binary distributions of Sage, to lower the size of the distribution. As of this writing (December
2014, Sage 6.5), there are only a few such plots, adding about 4M to the local/share/doc/sage/ directory.
In the future, this may grow, of course. Note: after using this, if you want to build the documentation and
include the pictures, you should run make doc-clean, because the presence, or lack, of pictures is cached in
the documentation output. You can benefit from this no-plot feature with other make targets by doing export
SAGE_DOCBUILD_OPTS+=' --no-plot'

• make ptest and make ptestlong: these run Sage’s test suite. The first version skips tests that need more
than a few seconds to complete and those which depend on optional packages or additional software. The second
version includes the former, and so it takes longer. The “p” in ptest stands for “parallel”: tests are run in parallel.
If you want to run tests serially, you can use make test or make testlong instead. If you want to run tests
depending on optional packages and additional software, you can use make testall, make ptestall, make
testalllong, or make ptestalllong.

• make doc-clean removes several directories which are produced when building the documentation.

• make distclean restores the Sage directory to its state before doing any building: it is almost equivalent to
deleting Sage’s entire home directory and unpacking the source tarfile again, the only difference being that the
.git directory is preserved, so git branches are not deleted.

4.6 Environment variables

Sage uses several environment variables to control its build process. Most users won’t need to set any of these: the build
process just works on many platforms. (Note though that setting MAKE, as described below, can significantly speed up
the process.) Building Sage involves building about 100 packages, each of which has its own compilation instructions.

The Sage source tarball already includes the sources for all standard packages, that is, it allows you to build Sage without
internet connection. The git repository, however, does not contain the source code for third-party packages. Instead, it
will be downloaded as needed (Note: you can run make download to force downloading packages before building).
Package downloads use the Sage mirror network, the nearest mirror will be determined automatically for you. This is
influenced by the following environment variable:

• SAGE_SERVER - Try the specified mirror first, before falling back to the official Sage mirror list. Note that Sage
will search the directory

4.5. Make targets 25

https://trac.sagemath.org/13343
https://en.wikipedia.org/wiki/HTML

Sage Installation Guide, Release 9.4

– SAGE_SERVER/spkg/upstream

for upstream tarballs.

Here are some of the more commonly used variables affecting the build process:

• MAKE - one useful setting for this variable when building Sage is MAKE='make -jNUM' to tell the make program
to run NUM jobs in parallel when building. Note that not all Sage packages (e.g. ATLAS) support this variable.

Some people advise using more jobs than there are CPU cores, at least if the system is not heavily loaded and
has plenty of RAM; for example, a good setting for NUM might be between 1 and 1.5 times the number of cores.
In addition, the -l option sets a load limit: MAKE='make -j4 -l5.5, for example, tells make to try to use four
jobs, but to not start more than one job if the system load average is above 5.5. See the manual page for GNU
make: Command-line options and Parallel building.

Warning: Some users on single-core macOS machines have reported problems when building Sage with
MAKE='make -jNUM' with NUM greater than one.

• SAGE_NUM_THREADS - if set to a number, then when building the documentation, parallel doctesting, or running
sage -b, use this many threads. If this is not set, then determine the number of threads using the value of the
MAKE (see above) or MAKEFLAGS environment variables. If none of these specifies a number of jobs, use one
thread (except for parallel testing: there we use a default of the number of CPU cores, with a maximum of 8 and
a minimum of 2).

• V - if set to 0, silence the build. Instead of showing a detailed compilation log, only one line of output is shown
at the beginning and at the end of the installation of each Sage package. To see even less output, use:

$ make -s V=0

(Note that the above uses the syntax of setting a Makefile variable.)

• SAGE_CHECK - if set to yes, then during the build process, or when installing packages manually, run the test
suite for each package which has one, and stop with an error if tests are failing. If set to warn, then only a warning
is printed in this case. See also SAGE_CHECK_PACKAGES.

• SAGE_CHECK_PACKAGES - if SAGE_CHECK is set to yes, then the default behavior is to run test suites for all spkgs
which contain them. If SAGE_CHECK_PACKAGES is set, it should be a comma-separated list of strings of the form
package-name or !package-name. An entry package-name means to run the test suite for the named package
regardless of the setting of SAGE_CHECK. An entry !package-name means to skip its test suite. So if this is set
to mpir,!python3, then always run the test suite for MPIR, but always skip the test suite for Python 3.

Note: As of Sage 9.1, the test suites for the Python 2 and 3 spkgs fail on most platforms. So when this variable
is empty or unset, Sage uses a default of !python2,!python3.

• SAGE_INSTALL_GCC - Obsolete, do not use, to be removed

• SAGE_INSTALL_CCACHE - by default Sage doesn’t install ccache, however by setting
SAGE_INSTALL_CCACHE=yes Sage will install ccache. Because the Sage distribution is quite large, the
maximum cache is set to 4G. This can be changed by running sage -sh -c "ccache --max-size=SIZE",
where SIZE is specified in gigabytes, megabytes, or kilobytes by appending a “G”, “M”, or “K”.

Sage does not include the sources for ccache since it is an optional package. Because of this, it is necessary to
have an Internet connection while building ccache for Sage, so that Sage can pull down the necessary sources.

• SAGE_DEBUG - controls debugging support. There are three different possible values:

26 Chapter 4. Install from Source Code

https://www.gnu.org/software/make/manual/make.html#Options-Summary
https://www.gnu.org/software/make/manual/make.html#Parallel

Sage Installation Guide, Release 9.4

– Not set (or set to anything else than “yes” or “no”): build binaries with debugging symbols, but no special
debug builds. This is the default. There is no performance impact, only additional disk space is used.

– SAGE_DEBUG=no: no means no debugging symbols (that is, no gcc -g), which saves some disk space.

– SAGE_DEBUG=yes: build debug versions if possible (in particular, Python is built with additional debugging
turned on and Singular is built with a different memory manager). These will be notably slower but, for
example, make it much easier to pinpoint memory allocation problems.

Instead of using SAGE_DEBUG one can configure with --enable-debug={no|symbols|yes}.

• SAGE_PROFILE - controls profiling support. If this is set to yes, profiling support is enabled where possible.
Note that Python-level profiling is always available; This option enables profiling in Cython modules.

• SAGE_SPKG_INSTALL_DOCS - if set to yes, then install package-specific documentation to $SAGE_ROOT/
local/share/doc/PACKAGE_NAME/ when an spkg is installed. This option may not be supported by all sp-
kgs. Some spkgs might also assume that certain programs are available on the system (for example, latex or
pdflatex).

• SAGE_DOC_MATHJAX - by default, any LaTeX code in Sage’s documentation is processed by MathJax. If this
variable is set to no, then MathJax is not used – instead, math is processed using LaTeX and converted by dvipng
to image files, and then those files are included into the documentation. Typically, building the documentation
using LaTeX and dvipng takes longer and uses more memory and disk space than using MathJax.

• SAGE_DOCBUILD_OPTS - the value of this variable is passed as an argument to sage --docbuild all html
or sage --docbuild all pdf when you run make, make doc, or make doc-pdf. For example, you can
add --no-plot to this variable to avoid building the graphics coming from the .. PLOT directive within the
documentation, or you can add --include-tests-blocks to include all “TESTS” blocks in the reference
manual. Run sage --docbuild help to see the full list of options.

• SAGE_BUILD_DIR - the default behavior is to build each spkg in a subdirectory of $SAGE_ROOT/local/var/
tmp/sage/build/; for example, build version 3.8.3.p12 of atlas in the directory $SAGE_ROOT/local/var/
tmp/sage/build/atlas-3.8.3.p12/. If this variable is set, then build in $SAGE_BUILD_DIR/atlas-3.8.
3.p12/ instead. If the directory $SAGE_BUILD_DIR does not exist, it is created. As of this writing (Sage 4.8),
when building the standard Sage packages, 1.5 gigabytes of free space are required in this directory (or more
if SAGE_KEEP_BUILT_SPKGS=yes – see below); the exact amount of required space varies from platform to
platform. For example, the block size of the file system will affect the amount of space used, since some spkgs
contain many small files.

Warning: The variable SAGE_BUILD_DIR must be set to the full path name of either an existing directory
for which the user has write permissions, or to the full path name of a nonexistent directory which the user
has permission to create. The path name must contain no spaces.

• SAGE_KEEP_BUILT_SPKGS - the default behavior is to delete each build directory – the appropriate subdirectory
of $SAGE_ROOT/local/var/tmp/sage/build or $SAGE_BUILD_DIR – after each spkg is successfully built,
and to keep it if there were errors installing the spkg. Set this variable to yes to keep the subdirectory regardless.
Furthermore, if you install an spkg for which there is already a corresponding subdirectory, for example left over
from a previous build, then the default behavior is to delete that old subdirectory. If this variable is set to yes, then
the old subdirectory is moved to $SAGE_ROOT/local/var/tmp/sage/build/old/ (or $SAGE_BUILD_DIR/
old), overwriting any already existing file or directory with the same name.

Note: After a full build of Sage (as of version 4.8), these subdirectories can take up to 6 gigabytes of storage,
in total, depending on the platform and the block size of the file system. If you always set this variable to yes,
it can take even more space: rebuilding every spkg would use double the amount of space, and any upgrades to
spkgs would create still more directories, using still more space.

4.6. Environment variables 27

Sage Installation Guide, Release 9.4

Note: In an existing Sage installation, running sage -i -s <package-name> or sage -f -s
<package-name> installs the spkg <package-name> and keeps the corresponding build directory; thus setting
SAGE_KEEP_BUILT_SPKGS to yes mimics this behavior when building Sage from scratch or when installing
individual spkgs. So you can set this variable to yes instead of using the -s flag for sage -i and sage -f.

• SAGE_FAT_BINARY - to build binaries that will run on the widest range of target CPUs set this variable to yes
before building Sage or configure with --enable-fat-binary. This does not make the binaries relocatable,
it only avoids newer CPU instruction set extensions. For relocatable (=can be moved to a different directory)
binaries, you must use https://github.com/sagemath/binary-pkg

• SAGE_SUDO - set this to sudo -E or to any other command prefix that is necessary to write into a installation
hierarchy (SAGE_LOCAL) owned by root or another user. Note that this command needs to preserve environment
variable settings (plain sudo does not).

Not all Sage packages currently support SAGE_SUDO.

Therefore this environment variable is most useful when a system administrator wishes to install an additional
Sage package that supports SAGE_SUDO, into a root-owned installation hierarchy (SAGE_LOCAL).

Environment variables dealing with specific Sage packages:

• SAGE_MP_LIBRARY - to use an alternative library in place of MPIR for multiprecision integer arithmetic. Sup-
ported values are

MPIR (default choice), GMP.

• SAGE_ATLAS_ARCH - if you are compiling ATLAS (in particular, if SAGE_ATLAS_LIB is not set), you can use
this environment variable to set a particular architecture and instruction set extension, to control the maximum
number of threads ATLAS can use, and to trigger the installation of a static library (which is disabled by default
unless building our custom shared libraries fails). The syntax is

SAGE_ATLAS_ARCH=[threads:n,][static,]arch[,isaext1][,isaext2]...[,isaextN].

While ATLAS comes with precomputed timings for a variety of CPUs, it only uses them if it finds an exact
match. Otherwise, ATLAS runs through a lengthy automated tuning process in order to optimize performance
for your particular system, which can take several days on slow and unusual systems. You drastically reduce the
total Sage compile time if you manually select a suitable architecture. It is recommended to specify a suitable
architecture on laptops or other systems with CPU throttling or if you want to distribute the binaries. Available
architectures are

POWER3, POWER4, POWER5, PPCG4, PPCG5, POWER6, POWER7, IBMz9, IBMz10, IBMz196, x86x87,
x86SSE1, x86SSE2, x86SSE3, P5, P5MMX, PPRO, PII, PIII, PM, CoreSolo, CoreDuo, Core2Solo,
Core2, Corei1, Corei2, Atom, P4, P4E, Efficeon, K7, HAMMER, AMD64K10h, AMDDOZER,
UNKNOWNx86, IA64Itan, IA64Itan2, USI, USII, USIII, USIV, UST2, UnknownUS, MIPSR1xK,
MIPSICE9, ARMv7.

and instruction set extensions are

VSX, AltiVec, AVXMAC, AVXFMA4, AVX, SSE3, SSE2, SSE1, 3DNow, NEON.

In addition, you can also set

– SAGE_ATLAS_ARCH=fast which picks defaults for a modern (2-3 year old) CPU of your processor line,
and

– SAGE_ATLAS_ARCH=base which picks defaults that should work for a ~10 year old CPU.

For example,

SAGE_ATLAS_ARCH=Corei2,AVX,SSE3,SSE2,SSE1

28 Chapter 4. Install from Source Code

https://github.com/sagemath/binary-pkg

Sage Installation Guide, Release 9.4

would be appropriate for a Core i7 CPU.

• SAGE_ATLAS_LIB - if you have an installation of ATLAS on your system and you want Sage to use it instead
of building and installing its own version of ATLAS, set this variable to be the directory containing your AT-
LAS installation. It should contain the files libatlas, liblapack, libcblas, libf77blas (and optionally
libptcblas and libptf77blas for multi-threaded computations), with extensions .a, .so, or .dylib. For
backward compatibility, the libraries may also be in the subdirectory SAGE_ATLAS_LIB/lib/.

• SAGE_MATPLOTLIB_GUI - if set to anything non-empty except no, then Sage will attempt to build the graphical
backend when it builds the matplotlib package.

• PARI_CONFIGURE - use this to pass extra parameters to PARI’s Configure script, for example to specify graphics
support (which is disabled by default). See the file build/pkgs/pari/spkg-install for more information.

• SAGE_TUNE_PARI: If yes, enable PARI self-tuning. Note that this can be time-consuming. If you set this
variable to “yes”, you will also see this: WARNING: Tuning PARI/GP is unreliable. You may find
your build of PARI fails, or PARI/GP does not work properly once built. We recommend
to build this package with SAGE_CHECK="yes".

• PARI_MAKEFLAGS: The value of this variable is passed as an argument to the $MAKE command when compiling
PARI.

Some standard environment variables which are used by Sage:

• CC - while some programs allow you to use this to specify your C compiler, not every Sage package recognizes
this. If GCC is installed within Sage, CC is ignored and Sage’s gcc is used instead.

• CPP - similarly, this will set the C preprocessor for some Sage packages, and similarly, using it is likely quite
risky. If GCC is installed within Sage, CPP is ignored and Sage’s cpp is used instead.

• CXX - similarly, this will set the C++ compiler for some Sage packages, and similarly, using it is likely quite risky.
If GCC is installed within Sage, CXX is ignored and Sage’s g++ is used instead.

• FC - similarly, this will set the Fortran compiler. This is supported by all Sage packages which have Fortran code.
However, for historical reasons, the value is hardcoded during the initial make and subsequent changes to $FC
might be ignored (in which case, the original value will be used instead). If GCC is installed within Sage, FC is
ignored and Sage’s gfortran is used instead.

• CFLAGS, CXXFLAGS and FCFLAGS - the flags for the C compiler, the C++ compiler and the Fortran compiler,
respectively. The same comments apply to these: setting them may cause problems, because they are not univer-
sally respected among the Sage packages. Note also that export CFLAGS="" does not have the same effect as
unset CFLAGS. The latter is preferable.

• Similar comments apply to other compiler and linker flags like CPPFLAGS, LDFLAGS, CXXFLAG64, LDFLAG64,
and LD.

• OPENBLAS_CONFIGURE - adds additional configuration flags for the OpenBLAS package that gets added to the
make command. (see trac ticket #23272)

Sage uses the following environment variables when it runs:

• DOT_SAGE - this is the directory, to which the user has read and write access, where Sage stores a number of files.
The default location is $HOME/.sage/.

• SAGE_STARTUP_FILE - a file including commands to be executed every time Sage starts. The default value is
$DOT_SAGE/init.sage.

• BROWSER - on most platforms, Sage will detect the command to run a web browser, but if this doesn’t seem to
work on your machine, set this variable to the appropriate command.

Variables dealing with doctesting:

4.6. Environment variables 29

https://trac.sagemath.org/23272

Sage Installation Guide, Release 9.4

• SAGE_TIMEOUT - used for Sage’s doctesting: the number of seconds to allow a doctest before timing it out. If
this isn’t set, the default is 300 seconds (5 minutes).

• SAGE_TIMEOUT_LONG - used for Sage’s doctesting: the number of seconds to allow a doctest before timing it
out, if tests are run using sage -t --long. If this isn’t set, the default is 1800 seconds (30 minutes).

• SAGE_TEST_GLOBAL_ITER, SAGE_TEST_ITER: these can be used instead of passing the flags
--global-iterations and --file-iterations, respectively, to sage -t. Indeed, these variables
are only used if the flags are unset. Run sage -t -h for more information on the effects of these flags (and
therefore these variables).

Sage sets some other environment variables. The most accurate way to see what Sage does is to first run env from a
shell prompt to see what environment variables you have set. Then run sage --sh -c env to see the list after Sage
sets its variables. (This runs a separate shell, executes the shell command env, and then exits that shell, so after running
this, your settings will be restored.) Alternatively, you can peruse the shell script src/bin/sage-env.

Sage also has some environment-like settings. Some of these correspond to actual environment variables while others
have names like environment variables but are only available while Sage is running. To see a list, execute sage.env.
[TAB] while running Sage.

4.7 Installation in a Multiuser Environment

This section addresses the question of how a system administrator can install a single copy of Sage in a multi-user
computer network.

4.7.1 System-wide install

In the instructions below, we assume that /path/to/sage-x.y is the directory where you want to install Sage.

1. First of all, extract the Sage source tarball in /path/to (this will create the directory /path/to/sage-x.y).
After extracting, you can change the directory name if you do not like sage-x.y.

2. Change the ownership of the /path/to/sage-x.y directory tree to your normal user account (as opposed to
root). This is because Sage will refuse to compile as root.

$ chown -R user:group /path/to/sage-x.y

3. Using your normal user account, build Sage. See the Step-by-step installation procedure above.

4. Make a symbolic link to the sage script in /usr/local/bin:

$ ln -s /path/to/sage-x.y/sage /usr/local/bin/sage

Alternatively, copy the Sage script:

$ cp /path/to/sage-x.y/sage /usr/local/bin/sage

If you do this, make sure you edit the line:

#SAGE_ROOT=/path/to/sage-version

at the beginning of the copied sage script according to the direction given there to something like:

SAGE_ROOT=<SAGE_ROOT>

30 Chapter 4. Install from Source Code

Sage Installation Guide, Release 9.4

(note that you have to change <SAGE_ROOT> above!). It is recommended not to edit the original sage script, only
the copy at /usr/local/bin/sage.

5. Optionally, you can test Sage by running:

$ make testlong

or make ptestlong which tests files in parallel using multiple processes. You can also omit long to skip tests
which take a long time.

This page was last updated in December 2020 (Sage 9.3).

4.7. Installation in a Multiuser Environment 31

Sage Installation Guide, Release 9.4

32 Chapter 4. Install from Source Code

CHAPTER

FIVE

LAUNCHING SAGEMATH

Now we assume that you installed SageMath properly on your system. This section quickly explains how to start the
Sage console and the Jupyter Notebook from the command line.

If you did install the Windows version or the macOS application you should have icons available on your desktops or
launching menus. Otherwise you are strongly advised to create shortcuts for Sage as indicated at the end of the “Linux”
Section in Install from Pre-built Binaries. Assuming that you have this shortcut, running

sage

in a console starts a Sage session. To quit the session enter quit and then press <Enter>.

To start a Jupyter Notebook instead of a Sage console, run the command

sage -n jupyter

instead of just sage. To quit the Jupyter Notebook press <Ctrl> + <c> twice in the console where you launched the
command.

5.1 Using a Jupyter Notebook remotely

If Sage is installed on a remote machine to which you have ssh access, you can launch a Jupyter Notebook using a
command such as

ssh -L localhost:8888:localhost:8888 -t USER@REMOTE sage -n jupyter --no-browser --
→˓port=8888

where USER@REMOTE needs to be replaced by the login details to the remote machine. This uses local port forwarding
to connect your local machine to the remote one. The command will print a URL to the console which you can copy
and paste in a web browser.

Note that this assumes that a firewall which might be present between server and client allows connections on port
8888. See details on port forwarding on the internet, e.g. https://www.ssh.com/ssh/tunneling/example.

33

https://www.ssh.com/ssh/tunneling/example

Sage Installation Guide, Release 9.4

5.2 WSL Post-installation steps

If you’ve installed Sage Math from source on WSL, there are a couple of extra steps you can do to make your life easier:

5.2.1 Create a notebook launch script

If you plan to use JupyterLab, install that first.

Now create a script called ~/sage_nb.sh containing the following lines, and fill in the correct paths for your desired
starting directory and SAGE_ROOT

#!/bin/bash
Switch to desired windows directory
cd /mnt/c/path/to/desired/starting/directory
Start the Jupyter notebook
SAGE_ROOT/sage --notebook
Alternatively you can run JupyterLab - delete the line above, and uncomment the line␣
→˓below
#SAGE_ROOT/sage --notebook jupyterlab

Make it executable:

chmod ug+x ~/sage_nb.sh

Run it to test:

cd ~
./sage_nb.sh

The Jupyter(Lab) server should start in the terminal window, and you windows browser should open a page showing
the Jupyter or JupyterLab starting page, at the directory you specified.

5.2.2 Create a shortcut

This is a final nicety that lets you start the Jupyter or JupyterLab server in one click:

• Open Windows explorer, and type %APPDATA%\Microsoft\Windows\Start Menu\Programs in the address
bar and press enter. This is the folder that contains you start menu shortcuts. If you want the sage shortcut
somewhere else (like your desktop), open that folder instead.

• Open a separate window and go to %LOCALAPPDATA%\Microsoft\WindowsApps\

• Right-click-drag the ubuntu.exe icon from the second window into the first, then choose Create shortcuts
here from the context menu when you drop it.

• To customize this shortcut, right-click on it and choose properties.

– On the General tab:

∗ Change the name to whatever you want, e.g. “Sage 9.2 JupyterLab”

– On the Shortcut tab:

∗ Change Target to: ubuntu.exe run ~/sage_nb.sh

∗ Change Start in to: %USERPROFILE%

∗ Change Run to: Minimised

34 Chapter 5. Launching SageMath

Sage Installation Guide, Release 9.4

∗ Change the icon if you want

Now hit the start button or key and type the name you gave it. it should appear in the list, and should load the server
and fire up your browser when you click on it.

For further reading you can have a look at the other documents in the SageMath documentation at http://doc.sagemath.
org/.

5.3 Setting up SageMath as a Jupyter kernel in an existing Jupyter
notebook or JupyterLab installation

You may already have a global installation of Jupyter. For added convenience, it is possible to link your installation of
SageMath into your Jupyter installation, adding it to the list of available kernels that can be selected in the notebook or
JupyterLab interface.

If $SAGE_LOCAL is the installation prefix of your Sage installation (the default is $SAGE_ROOT/local) and you can
start the Jupyter notebook by typing jupyter notebook, then the following command will install SageMath as a new
kernel.

jupyter kernelspec install --user $SAGE_LOCAL/share/jupyter/kernels/sagemath

This installs the kernel under the name sagemath. If you wish to rename it to something more specific in order to
distinguish between different installations of SageMath, you can use the additional option --name, for example

jupyter kernelspec install --user $SAGE_LOCAL/share/jupyter/kernels/sagemath --name␣
→˓sagemath-dev-worktree

The jupyter kernelspec approach by default does lead to about 2Gb of sagemath documentation being copied into
your personal jupyter configuration directory. You can avoid that by instead putting a symlink in the relevant spot.
Assuming that sagemath is properly installed, you can use

sage -sh -c 'ls -d $SAGE_LOCAL/share/jupyter/kernels/sagemath'

to find location of the sagemath kernel description and

jupyter --paths

to find valid data directories for your jupyter installation. A command along the lines of

ln -s `sage -sh -c 'ls -d $SAGE_LOCAL/share/jupyter/kernels/sagemath'` $HOME/.local/
→˓share/jupyter

can then be used to create a symlink to the sagemath kernel description in a location where your own jupyter can find
it.

To get the full functionality of the SageMath kernel in your global Jupyter installation, the following Notebook Exten-
sion packages also need to be installed (or linked) in the environment from which the Jupyter installation runs.

You can check the presence of some of these packages using the command jupyter nbextension list.

• For the Sage interacts, you will need the package widgetsnbextension installed in the Python environment
of the Jupyter installation. If your Jupyter installation is coming from the system package manager, it is best to
install widgetsnbextension in the same way. Otherwise, install it using pip.

To verify that interacts work correctly, you can evaluate the following code in the notebook:

5.3. Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or JupyterLab
installation

35

http://doc.sagemath.org/
http://doc.sagemath.org/

Sage Installation Guide, Release 9.4

@interact
def _(k=slider(vmin=-1.0, vmax= 3.0, step_size=0.1, default=0), auto_update=True):
plot([lambda u:u^2-1, lambda u:u+k], (-2,2),

ymin=-1, ymax=3, fill={1:[0]}, fillalpha=0.5).show()

• For 3D graphics using Three.js, by default, internet connectivity is needed, as SageMath’s custom build of the
Javascript package Three.js is retrieved from a content delivery network.

To verify that online 3D graphics with Three.js works correctly, you can evaluate the following code in the
notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show()

However, it is possible to configure graphics with Three.js for offline use. In this case, the Three.js installation
from the Sage distribution needs to be made available in the environment of the Jupyter installation. This can
be done by copying or symlinking. The Three.js installation in the environment of the Jupyter installation must
exactly match the version that comes from the Sage distribution. It is not supported to use several Jupyter kernels
corresponding to different versions of the Sage distribution.

To verify that offline 3D graphics with Three.js works correctly, you can evaluate the following code in the
notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2), online=False).show()

• For 3D graphics using jsmol, you will need the package jupyter-jsmol installed in the Python environment of
the Jupyter installation. You can install it using pip. (Alternatively, you can copy or symlink it.)

To verify that jsmol graphics work correctly, you can evaluate the following code in the notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show(viewer="jmol")

36 Chapter 5. Launching SageMath

CHAPTER

SIX

TROUBLESHOOTING

If no binary version is available for your system, you can fallback to the Install from Source Code or use one of the
alternatives proposed at the end of Welcome to the SageMath Installation Guide.

If you have any problems building or running Sage, please take a look at the Installation FAQ in the Sage Release Tour
corresponding to the version that you are installing. It may offer version-specific installation help that has become
available after the release was made and is therefore not covered by this manual.

Also please do not hesitate to ask for help in the SageMath forum or the sage-support mailing list at https://groups.
google.com/forum/#!forum/sage-support.

Also note the following. Each separate component of Sage is contained in an SPKG; these are stored in build/pkgs/.
As each one is built, a build log is stored in logs/pkgs/, so you can browse these to find error messages. If an SPKG
fails to build, the whole build process will stop soon after, so check the most recent log files first, or run:

grep -li "^Error" logs/pkgs/*

from the top-level Sage directory to find log files with error messages in them. Send the file config.log as well
as the log file(s) of the packages that have failed to build in their entirety to the sage-support mailing list at https:
//groups.google.com/group/sage-support; probably someone there will have some helpful suggestions.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

37

https://wiki.sagemath.org/ReleaseTours
https://ask.sagemath.org/questions/
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support
http://creativecommons.org/licenses/by-sa/3.0/

Sage Installation Guide, Release 9.4

38 Chapter 6. Troubleshooting

INDEX

B
BROWSER, 29

C
CC, 21, 29
CFLAGS, 29
CPP, 29
CPPFLAGS, 29
CXX, 21, 29
CXXFLAG64, 29
CXXFLAGS, 29
CYGWIN_ROOT, 24

D
DOT_SAGE, 29

E
environment variable

BROWSER, 29
CC, 21, 29
CFLAGS, 29
CPP, 29
CPPFLAGS, 29
CXX, 21, 29
CXXFLAG64, 29
CXXFLAGS, 29
CYGWIN_ROOT, 24
DOT_SAGE, 29
FC, 21, 29
FCFLAGS, 29
HOME, 20
LD, 29
LDFLAG64, 29
LDFLAGS, 29
MAKE, 25, 26
MAKEFLAGS, 26
OBJC, 21
OBJCXX, 21
OPENBLAS_CONFIGURE, 29
PARI_CONFIGURE, 29
PARI_MAKEFLAGS, 29
PATH, 18, 22, 23

SAGE_ATLAS_ARCH, 28
SAGE_ATLAS_LIB, 28, 29
SAGE_BUILD_DIR, 27
SAGE_CHECK, 26
SAGE_CHECK_PACKAGES, 26
SAGE_DEBUG, 26, 27
SAGE_DOC_MATHJAX, 27
SAGE_DOCBUILD_OPTS, 27
SAGE_FAT_BINARY, 28
SAGE_INSTALL_CCACHE, 26
SAGE_INSTALL_GCC, 26
SAGE_KEEP_BUILT_SPKGS, 27, 28
SAGE_LOCAL, 21, 28
SAGE_MATPLOTLIB_GUI, 29
SAGE_MP_LIBRARY, 28
SAGE_NUM_THREADS, 26
SAGE_PROFILE, 27
SAGE_ROOT, 20, 21, 24
SAGE_SERVER, 25
SAGE_SPKG_INSTALL_DOCS, 27
SAGE_STARTUP_FILE, 29
SAGE_SUDO, 28
SAGE_TEST_GLOBAL_ITER, 30
SAGE_TEST_ITER, 30
SAGE_TIMEOUT, 30
SAGE_TIMEOUT_LONG, 30
SAGE_TUNE_PARI, 29
V, 26

F
FC, 21, 29
FCFLAGS, 29

H
HOME, 20

L
LD, 29
LDFLAG64, 29
LDFLAGS, 29

M
MAKE, 25, 26

39

Sage Installation Guide, Release 9.4

MAKEFLAGS, 26

O
OBJC, 21
OBJCXX, 21
OPENBLAS_CONFIGURE, 29

P
PARI_CONFIGURE, 29
PARI_MAKEFLAGS, 29
PATH, 18, 22, 23

S
SAGE_ATLAS_ARCH, 28
SAGE_ATLAS_LIB, 28, 29
SAGE_BUILD_DIR, 27
SAGE_CHECK, 26
SAGE_CHECK_PACKAGES, 26
SAGE_DEBUG, 26, 27
SAGE_DOC_MATHJAX, 27
SAGE_DOCBUILD_OPTS, 27
SAGE_FAT_BINARY, 28
SAGE_INSTALL_CCACHE, 26
SAGE_INSTALL_GCC, 26
SAGE_KEEP_BUILT_SPKGS, 27, 28
SAGE_LOCAL, 21, 28
SAGE_MATPLOTLIB_GUI, 29
SAGE_MP_LIBRARY, 28
SAGE_NUM_THREADS, 26
SAGE_PROFILE, 27
SAGE_ROOT, 20, 21, 24
SAGE_SERVER, 25
SAGE_SPKG_INSTALL_DOCS, 27
SAGE_STARTUP_FILE, 29
SAGE_SUDO, 28
SAGE_TEST_GLOBAL_ITER, 30
SAGE_TEST_ITER, 30
SAGE_TIMEOUT, 30
SAGE_TIMEOUT_LONG, 30
SAGE_TUNE_PARI, 29

V
V, 26

40 Index

	Linux package managers
	Install from Pre-built Binaries
	Download Guide
	Linux
	macOS
	Microsoft Windows (Cygwin)

	Install from conda-forge
	Install from Source Code
	Supported platforms
	Prerequisites
	General requirements
	Disk space and memory
	Command-line tools
	Libraries
	Fortran and compiler suites

	Python for venv
	Other notes

	System-specific requirements
	Installing prerequisites
	Linux recommended installation
	macOS prerequisite installation
	macOS recommended installation
	Cygwin prerequisite installation
	Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation
	Other platforms
	Using conda to provide system dependencies
	Using conda to provide all SPKGs
	Notes on using conda

	Specific notes for make and tar
	Using alternative compilers

	Additional software
	Recommended programs
	Notebook additional features
	Tcl/Tk

	Step-by-step installation procedure
	General procedure
	Building the notebook with SSL support
	Rebasing issues on Cygwin

	Make targets
	Environment variables
	Installation in a Multiuser Environment
	System-wide install

	Launching SageMath
	Using a Jupyter Notebook remotely
	WSL Post-installation steps
	Create a notebook launch script
	Create a shortcut

	Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or JupyterLab installation

	Troubleshooting
	Index

