Descent Algebras

AUTHORS:

  • Travis Scrimshaw (2013-07-28): Initial version

class sage.combinat.descent_algebra.DescentAlgebra(R, n)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

Solomon’s descent algebra.

The descent algebra Σn over a ring R is a subalgebra of the symmetric group algebra RSn. (The product in the latter algebra is defined by (pq)(i)=q(p(i)) for any two permutations p and q in Sn and every i{1,2,,n}. The algebra Σn inherits this product.)

There are three bases currently implemented for Σn:

  • the standard basis DS of (sums of) descent classes, indexed by subsets S of {1,2,,n1},

  • the subset basis Bp, indexed by compositions p of n,

  • the idempotent basis Ip, indexed by compositions p of n, which is used to construct the mutually orthogonal idempotents of the symmetric group algebra.

The idempotent basis is only defined when R is a Q-algebra.

We follow the notations and conventions in [GR1989], apart from the order of multiplication being different from the one used in that article. Schocker’s exposition [Sch2004], in turn, uses the same order of multiplication as we are, but has different notations for the bases.

INPUT:

  • R – the base ring

  • n – a nonnegative integer

REFERENCES:

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D(); D
Descent algebra of 4 over Rational Field in the standard basis
sage: B = DA.B(); B
Descent algebra of 4 over Rational Field in the subset basis
sage: I = DA.I(); I
Descent algebra of 4 over Rational Field in the idempotent basis
sage: basis_B = B.basis()
sage: elt = basis_B[Composition([1,2,1])] + 4*basis_B[Composition([1,3])]; elt
B[1, 2, 1] + 4*B[1, 3]
sage: D(elt)
5*D{} + 5*D{1} + D{1, 3} + D{3}
sage: I(elt)
7/6*I[1, 1, 1, 1] + 2*I[1, 1, 2] + 3*I[1, 2, 1] + 4*I[1, 3]

As syntactic sugar, one can use the notation D[i,...,l] to construct elements of the basis; note that for the empty set one must use D[[]] due to Python’s syntax:

sage: D[[]] + D[2] + 2*D[1,2]
D{} + 2*D{1, 2} + D{2}

The same syntax works for the other bases:

sage: I[1,2,1] + 3*I[4] + 2*I[3,1]
I[1, 2, 1] + 2*I[3, 1] + 3*I[4]
class B(alg, prefix='B')

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The subset basis of a descent algebra (indexed by compositions).

The subset basis (BS)S{1,2,,n1} of Σn is formed by

BS=TSDT,

where (DS)S{1,2,,n1} is the standard basis. However it is more natural to index the subset basis by compositions of n under the bijection {i1,i2,,ik}(i1,i2i1,i3i2,,ikik1,nik) (where i1<i2<<ik), which is what Sage uses to index the basis.

The basis element Bp is denoted Ξp in [Sch2004].

By using compositions of n, the product BpBq becomes a sum over the non-negative-integer matrices M with row sum p and column sum q. The summand corresponding to M is Bc, where c is the composition obtained by reading M row-by-row from left-to-right and top-to-bottom and removing all zeroes. This multiplication rule is commonly called “Solomon’s Mackey formula”.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: list(B.basis())
[B[1, 1, 1, 1], B[1, 1, 2], B[1, 2, 1], B[1, 3],
 B[2, 1, 1], B[2, 2], B[3, 1], B[4]]
one_basis()

Return the identity element which is the composition [n], as per AlgebrasWithBasis.ParentMethods.one_basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).B().one_basis()
[4]
sage: DescentAlgebra(QQ, 0).B().one_basis()
[]

sage: all( U * DescentAlgebra(QQ, 3).B().one() == U
....:      for U in DescentAlgebra(QQ, 3).B().basis() )
True
product_on_basis(p, q)

Return BpBq, where p and q are compositions of n.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: p = Composition([1,2,1])
sage: q = Composition([3,1])
sage: B.product_on_basis(p, q)
B[1, 1, 1, 1] + 2*B[1, 2, 1]
to_D_basis(p)

Return Bp as a linear combination of D-basis elements.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: D = DA.D()
sage: list(map(D, B.basis()))  # indirect doctest
[D{} + D{1} + D{1, 2} + D{1, 2, 3}
  + D{1, 3} + D{2} + D{2, 3} + D{3},
 D{} + D{1} + D{1, 2} + D{2},
 D{} + D{1} + D{1, 3} + D{3},
 D{} + D{1},
 D{} + D{2} + D{2, 3} + D{3},
 D{} + D{2},
 D{} + D{3},
 D{}]
to_I_basis(p)

Return Bp as a linear combination of I-basis elements.

This is done using the formula

Bp=qp1k!(q,p)Iq,

where is the refinement order and k!(q,p) is defined as follows: When qp, we can write q as a concatenation q(1)q(2)q(k) with each q(i) being a composition of the i-th entry of p, and then we set k!(q,p) to be l(q(1))!l(q(2))!l(q(k))!, where l(r) denotes the number of parts of any composition r.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: I = DA.I()
sage: list(map(I, B.basis()))  # indirect doctest
[I[1, 1, 1, 1],
 1/2*I[1, 1, 1, 1] + I[1, 1, 2],
 1/2*I[1, 1, 1, 1] + I[1, 2, 1],
 1/6*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[1, 2, 1] + I[1, 3],
 1/2*I[1, 1, 1, 1] + I[2, 1, 1],
 1/4*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[2, 1, 1] + I[2, 2],
 1/6*I[1, 1, 1, 1] + 1/2*I[1, 2, 1] + 1/2*I[2, 1, 1] + I[3, 1],
 1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1]
  + 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2] + 1/2*I[3, 1] + I[4]]
to_nsym(p)

Return Bp as an element in NSym, the non-commutative symmetric functions.

This maps Bp to Sp where S denotes the Complete basis of NSym.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: S = NonCommutativeSymmetricFunctions(QQ).Complete()
sage: list(map(S, B.basis()))  # indirect doctest
[S[1, 1, 1, 1],
 S[1, 1, 2],
 S[1, 2, 1],
 S[1, 3],
 S[2, 1, 1],
 S[2, 2],
 S[3, 1],
 S[4]]
class D(alg, prefix='D')

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The standard basis of a descent algebra.

This basis is indexed by S{1,2,,n1}, and the basis vector indexed by S is the sum of all permutations, taken in the symmetric group algebra RSn, whose descent set is S. We denote this basis vector by DS.

Occasionally this basis appears in literature but indexed by compositions of n rather than subsets of {1,2,,n1}. The equivalence between these two indexings is owed to the bijection from the power set of {1,2,,n1} to the set of all compositions of n which sends every subset {i1,i2,,ik} of {1,2,,n1} (with i1<i2<<ik) to the composition (i1,i2i1,,ikik1,nik).

The basis element corresponding to a composition p (or to the subset of {1,2,,n1}) is denoted Δp in [Sch2004].

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: list(D.basis())
[D{}, D{1}, D{2}, D{3}, D{1, 2}, D{1, 3}, D{2, 3}, D{1, 2, 3}]

sage: DA = DescentAlgebra(QQ, 0)
sage: D = DA.D()
sage: list(D.basis())
[D{}]
one_basis()

Return the identity element, as per AlgebrasWithBasis.ParentMethods.one_basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).D().one_basis()
()
sage: DescentAlgebra(QQ, 0).D().one_basis()
()

sage: all( U * DescentAlgebra(QQ, 3).D().one() == U
....:      for U in DescentAlgebra(QQ, 3).D().basis() )
True
product_on_basis(S, T)

Return DSDT, where S and T are subsets of [n1].

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: D.product_on_basis((1, 3), (2,))
D{} + D{1} + D{1, 2} + 2*D{1, 2, 3} + D{1, 3} + D{2} + D{2, 3} + D{3}
to_B_basis(S)

Return DS as a linear combination of Bp-basis elements.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: B = DA.B()
sage: list(map(B, D.basis()))  # indirect doctest
[B[4],
 B[1, 3] - B[4],
 B[2, 2] - B[4],
 B[3, 1] - B[4],
 B[1, 1, 2] - B[1, 3] - B[2, 2] + B[4],
 B[1, 2, 1] - B[1, 3] - B[3, 1] + B[4],
 B[2, 1, 1] - B[2, 2] - B[3, 1] + B[4],
 B[1, 1, 1, 1] - B[1, 1, 2] - B[1, 2, 1] + B[1, 3]
  - B[2, 1, 1] + B[2, 2] + B[3, 1] - B[4]]
to_symmetric_group_algebra_on_basis(S)

Return DS as a linear combination of basis elements in the symmetric group algebra.

EXAMPLES:

sage: D = DescentAlgebra(QQ, 4).D()
sage: [D.to_symmetric_group_algebra_on_basis(tuple(b))
....:  for b in Subsets(3)]
[[1, 2, 3, 4],
 [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3],
 [1, 3, 2, 4] + [1, 4, 2, 3] + [2, 3, 1, 4]
  + [2, 4, 1, 3] + [3, 4, 1, 2],
 [1, 2, 4, 3] + [1, 3, 4, 2] + [2, 3, 4, 1],
 [3, 2, 1, 4] + [4, 2, 1, 3] + [4, 3, 1, 2],
 [2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1]
  + [4, 1, 3, 2] + [4, 2, 3, 1],
 [1, 4, 3, 2] + [2, 4, 3, 1] + [3, 4, 2, 1],
 [4, 3, 2, 1]]
class I(alg, prefix='I')

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The idempotent basis of a descent algebra.

The idempotent basis (Ip)pn is a basis for Σn whenever the ground ring is a Q-algebra. One way to compute it is using the formula (Theorem 3.3 in [GR1989])

Ip=qp(1)l(q)l(p)k(q,p)Bq,

where is the refinement order and l(r) denotes the number of parts of any composition r, and where k(q,p) is defined as follows: When qp, we can write q as a concatenation q(1)q(2)q(k) with each q(i) being a composition of the i-th entry of p, and then we set k(q,p) to be the product l(q(1))l(q(2))l(q(k)).

Let λ(p) denote the partition obtained from a composition p by sorting. This basis is called the idempotent basis since for any q such that λ(p)=λ(q), we have:

IpIq=s(λ)Ip

where λ denotes λ(p)=λ(q), and where s(λ) is the stabilizer of λ in Sn. (This is part of Theorem 4.2 in [GR1989].)

It is also straightforward to compute the idempotents Eλ for the symmetric group algebra by the formula (Theorem 3.2 in [GR1989]):

Eλ=1k!λ(p)=λIp.

Note

The basis elements are not orthogonal idempotents.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: I = DA.I()
sage: list(I.basis())
[I[1, 1, 1, 1], I[1, 1, 2], I[1, 2, 1], I[1, 3], I[2, 1, 1], I[2, 2], I[3, 1], I[4]]
idempotent(la)

Return the idempotent corresponding to the partition la of n.

EXAMPLES:

sage: I = DescentAlgebra(QQ, 4).I()
sage: E = I.idempotent([3,1]); E
1/2*I[1, 3] + 1/2*I[3, 1]
sage: E*E == E
True
sage: E2 = I.idempotent([2,1,1]); E2
1/6*I[1, 1, 2] + 1/6*I[1, 2, 1] + 1/6*I[2, 1, 1]
sage: E2*E2 == E2
True
sage: E*E2 == I.zero()
True
one()

Return the identity element, which is B[n], in the I basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).I().one()
1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1]
 + 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2]
 + 1/2*I[3, 1] + I[4]
sage: DescentAlgebra(QQ, 0).I().one()
I[]
one_basis()

The element 1 is not (generally) a basis vector in the I basis, thus this returns a TypeError.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).I().one_basis()
Traceback (most recent call last):
...
TypeError: 1 is not a basis element in the I basis.
product_on_basis(p, q)

Return IpIq, where p and q are compositions of n.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: I = DA.I()
sage: p = Composition([1,2,1])
sage: q = Composition([3,1])
sage: I.product_on_basis(p, q)
0
sage: I.product_on_basis(p, p)
2*I[1, 2, 1]
to_B_basis(p)

Return Ip as a linear combination of B-basis elements.

This is computed using the formula (Theorem 3.3 in [GR1989])

Ip=qp(1)l(q)l(p)k(q,p)Bq,

where is the refinement order and l(r) denotes the number of parts of any composition r, and where k(q,p) is defined as follows: When qp, we can write q as a concatenation q(1)q(2)q(k) with each q(i) being a composition of the i-th entry of p, and then we set k(q,p) to be l(q(1))l(q(2))l(q(k)).

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: I = DA.I()
sage: list(map(B, I.basis()))  # indirect doctest
[B[1, 1, 1, 1],
 -1/2*B[1, 1, 1, 1] + B[1, 1, 2],
 -1/2*B[1, 1, 1, 1] + B[1, 2, 1],
 1/3*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[1, 2, 1] + B[1, 3],
 -1/2*B[1, 1, 1, 1] + B[2, 1, 1],
 1/4*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[2, 1, 1] + B[2, 2],
 1/3*B[1, 1, 1, 1] - 1/2*B[1, 2, 1] - 1/2*B[2, 1, 1] + B[3, 1],
 -1/4*B[1, 1, 1, 1] + 1/3*B[1, 1, 2] + 1/3*B[1, 2, 1]
  - 1/2*B[1, 3] + 1/3*B[2, 1, 1] - 1/2*B[2, 2]
  - 1/2*B[3, 1] + B[4]]
a_realization()

Return a particular realization of self (the B-basis).

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: DA.a_realization()
Descent algebra of 4 over Rational Field in the subset basis
idempotent

alias of DescentAlgebra.I

standard

alias of DescentAlgebra.D

subset

alias of DescentAlgebra.B

class sage.combinat.descent_algebra.DescentAlgebraBases(base)

Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of a descent algebra.

class ElementMethods

Bases: object

to_symmetric_group_algebra()

Return self in the symmetric group algebra.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B[1,3].to_symmetric_group_algebra()
[1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3]
sage: I = DescentAlgebra(QQ, 4).I()
sage: elt = I(B[1,3])
sage: elt.to_symmetric_group_algebra()
[1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3]
class ParentMethods

Bases: object

is_commutative()

Return whether this descent algebra is commutative.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B.is_commutative()
False
sage: B = DescentAlgebra(QQ, 1).B()
sage: B.is_commutative()
True
is_field(proof=True)

Return whether this descent algebra is a field.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B.is_field()
False
sage: B = DescentAlgebra(QQ, 1).B()
sage: B.is_field()
True
to_symmetric_group_algebra()

Morphism from self to the symmetric group algebra.

EXAMPLES:

sage: D = DescentAlgebra(QQ, 4).D()
sage: D.to_symmetric_group_algebra(D[1,3])
[2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 3, 1]
sage: B = DescentAlgebra(QQ, 4).B()
sage: B.to_symmetric_group_algebra(B[1,2,1])
[1, 2, 3, 4] + [1, 2, 4, 3] + [1, 3, 4, 2] + [2, 1, 3, 4]
 + [2, 1, 4, 3] + [2, 3, 4, 1] + [3, 1, 2, 4] + [3, 1, 4, 2]
 + [3, 2, 4, 1] + [4, 1, 2, 3] + [4, 1, 3, 2] + [4, 2, 3, 1]
to_symmetric_group_algebra_on_basis(S)

Return the basis element index by S as a linear combination of basis elements in the symmetric group algebra.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 3).B()
sage: [B.to_symmetric_group_algebra_on_basis(c)
....:  for c in Compositions(3)]
[[1, 2, 3] + [1, 3, 2] + [2, 1, 3]
  + [2, 3, 1] + [3, 1, 2] + [3, 2, 1],
 [1, 2, 3] + [2, 1, 3] + [3, 1, 2],
 [1, 2, 3] + [1, 3, 2] + [2, 3, 1],
 [1, 2, 3]]
sage: I = DescentAlgebra(QQ, 3).I()
sage: [I.to_symmetric_group_algebra_on_basis(c)
....:  for c in Compositions(3)]
[[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1]
  + [3, 1, 2] + [3, 2, 1],
 1/2*[1, 2, 3] - 1/2*[1, 3, 2] + 1/2*[2, 1, 3]
  - 1/2*[2, 3, 1] + 1/2*[3, 1, 2] - 1/2*[3, 2, 1],
 1/2*[1, 2, 3] + 1/2*[1, 3, 2] - 1/2*[2, 1, 3]
  + 1/2*[2, 3, 1] - 1/2*[3, 1, 2] - 1/2*[3, 2, 1],
 1/3*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3]
  - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] + 1/3*[3, 2, 1]]
super_categories()

The super categories of self.

EXAMPLES:

sage: from sage.combinat.descent_algebra import DescentAlgebraBases
sage: DA = DescentAlgebra(QQ, 4)
sage: bases = DescentAlgebraBases(DA)
sage: bases.super_categories()
[Category of finite dimensional algebras with basis over Rational Field,
 Category of realizations of Descent algebra of 4 over Rational Field]