Combinations¶
AUTHORS:
Mike Hansen (2007): initial implementation
Vincent Delecroix (2011): cleaning, bug corrections, doctests
Antoine Genitrini (2020) : new implementation of the lexicographic unranking of combinations
- class sage.combinat.combination.ChooseNK(mset, k)¶
- sage.combinat.combination.Combinations(mset, k=None)¶
Return the combinatorial class of combinations of the multiset
mset
. Ifk
is specified, then it returns the combinatorial class of combinations ofmset
of sizek
.A combination of a multiset M is an unordered selection of k objects of M, where every object can appear at most as many times as it appears in M.
The combinatorial classes correctly handle the cases where
mset
has duplicate elements.EXAMPLES:
sage: C = Combinations(range(4)); C Combinations of [0, 1, 2, 3] sage: C.list() [[], [0], [1], [2], [3], [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3], [0, 1, 2, 3]] sage: C.cardinality() 16
sage: C2 = Combinations(range(4),2); C2 Combinations of [0, 1, 2, 3] of length 2 sage: C2.list() [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] sage: C2.cardinality() 6
sage: Combinations([1,2,2,3]).list() [[], [1], [2], [3], [1, 2], [1, 3], [2, 2], [2, 3], [1, 2, 2], [1, 2, 3], [2, 2, 3], [1, 2, 2, 3]]
sage: Combinations([1,2,3], 2).list() [[1, 2], [1, 3], [2, 3]]
sage: mset = [1,1,2,3,4,4,5] sage: Combinations(mset,2).list() [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 4], [4, 5]]
sage: mset = ["d","a","v","i","d"] sage: Combinations(mset,3).list() [['d', 'd', 'a'], ['d', 'd', 'v'], ['d', 'd', 'i'], ['d', 'a', 'v'], ['d', 'a', 'i'], ['d', 'v', 'i'], ['a', 'v', 'i']]
sage: X = Combinations([1,2,3,4,5],3) sage: [x for x in X] [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]
It is possible to take combinations of Sage objects:
sage: Combinations([vector([1,1]), vector([2,2]), vector([3,3])], 2).list() [[(1, 1), (2, 2)], [(1, 1), (3, 3)], [(2, 2), (3, 3)]]
- class sage.combinat.combination.Combinations_mset(mset)¶
Bases:
sage.structure.parent.Parent
- cardinality()¶
- class sage.combinat.combination.Combinations_msetk(mset, k)¶
Bases:
sage.structure.parent.Parent
- cardinality()¶
Return the size of combinations(mset, k).
IMPLEMENTATION: Wraps GAP’s NrCombinations.
EXAMPLES:
sage: mset = [1,1,2,3,4,4,5] sage: Combinations(mset,2).cardinality() 12
- class sage.combinat.combination.Combinations_set(mset)¶
Bases:
sage.combinat.combination.Combinations_mset
- rank(x)¶
EXAMPLES:
sage: c = Combinations([1,2,3]) sage: list(range(c.cardinality())) == list(map(c.rank, c)) True
- unrank(r)¶
EXAMPLES:
sage: c = Combinations([1,2,3]) sage: c.list() == list(map(c.unrank, range(c.cardinality()))) True
- class sage.combinat.combination.Combinations_setk(mset, k)¶
Bases:
sage.combinat.combination.Combinations_msetk
- list()¶
EXAMPLES:
sage: Combinations([1,2,3,4,5],3).list() [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]
- rank(x)¶
EXAMPLES:
sage: c = Combinations([1,2,3], 2) sage: list(range(c.cardinality())) == list(map(c.rank, c.list())) True
- unrank(r)¶
EXAMPLES:
sage: c = Combinations([1,2,3], 2) sage: c.list() == list(map(c.unrank, range(c.cardinality()))) True
- sage.combinat.combination.from_rank(r, n, k)¶
Return the combination of rank
r
in the subsets ofrange(n)
of sizek
when listed in lexicographic order.The algorithm used is based on factoradics and presented in [DGH2020]. It is there compared to the other from the literature.
EXAMPLES:
sage: import sage.combinat.combination as combination sage: combination.from_rank(0,3,0) () sage: combination.from_rank(0,3,1) (0,) sage: combination.from_rank(1,3,1) (1,) sage: combination.from_rank(2,3,1) (2,) sage: combination.from_rank(0,3,2) (0, 1) sage: combination.from_rank(1,3,2) (0, 2) sage: combination.from_rank(2,3,2) (1, 2) sage: combination.from_rank(0,3,3) (0, 1, 2)
- sage.combinat.combination.rank(comb, n, check=True)¶
Return the rank of
comb
in the subsets ofrange(n)
of sizek
wherek
is the length ofcomb
.The algorithm used is based on combinadics and James McCaffrey’s MSDN article. See: Wikipedia article Combinadic.
EXAMPLES:
sage: import sage.combinat.combination as combination sage: combination.rank((), 3) 0 sage: combination.rank((0,), 3) 0 sage: combination.rank((1,), 3) 1 sage: combination.rank((2,), 3) 2 sage: combination.rank((0,1), 3) 0 sage: combination.rank((0,2), 3) 1 sage: combination.rank((1,2), 3) 2 sage: combination.rank((0,1,2), 3) 0 sage: combination.rank((0,1,2,3), 3) Traceback (most recent call last): ... ValueError: len(comb) must be <= n sage: combination.rank((0,0), 2) Traceback (most recent call last): ... ValueError: comb must be a subword of (0,1,...,n) sage: combination.rank([1,2], 3) 2 sage: combination.rank([0,1,2], 3) 0