Finitely Generated Matrix Groups¶
This class is designed for computing with matrix groups defined by a finite set of generating matrices.
EXAMPLES:
sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0, -1,1]), matrix(F,2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
)
The finitely generated matrix groups can also be constructed as subgroups of matrix groups:
sage: SL2Z = SL(2,ZZ)
sage: S, T = SL2Z.gens()
sage: SL2Z.subgroup([T^2])
Subgroup with 1 generators (
[1 2]
[0 1]
) of Special Linear Group of degree 2 over Integer Ring
AUTHORS:
William Stein: initial version
David Joyner (2006-03-15): degree, base_ring, _contains_, list, random, order methods; examples
William Stein (2006-12): rewrite
David Joyner (2007-12): Added invariant_generators (with Martin Albrecht and Simon King)
David Joyner (2008-08): Added module_composition_factors (interface to GAP’s MeatAxe implementation) and as_permutation_group (returns isomorphic PermutationGroup).
Simon King (2010-05): Improve invariant_generators by using GAP for the construction of the Reynolds operator in Singular.
Volker Braun (2013-1) port to new Parent, libGAP.
Sebastian Oehms (2018-07): Added _permutation_group_element_ (Trac #25706)
Sebastian Oehms (2019-01): Revision of trac ticket #25706 (trac ticket #26903 and trac ticket #27143).
- class sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap(degree, base_ring, libgap_group, ambient=None, category=None)¶
Bases:
sage.groups.matrix_gps.matrix_group.MatrixGroup_gap
Matrix group generated by a finite number of matrices.
EXAMPLES:
sage: m1 = matrix(GF(11), [[1,2],[3,4]]) sage: m2 = matrix(GF(11), [[1,3],[10,0]]) sage: G = MatrixGroup(m1, m2); G Matrix group over Finite Field of size 11 with 2 generators ( [1 2] [ 1 3] [3 4], [10 0] ) sage: type(G) <class 'sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap_with_category'> sage: TestSuite(G).run()
- as_permutation_group(algorithm=None, seed=None)¶
Return a permutation group representation for the group.
In most cases occurring in practice, this is a permutation group of minimal degree (the degree being determined from orbits under the group action). When these orbits are hard to compute, the procedure can be time-consuming and the degree may not be minimal.
INPUT:
algorithm
–None
or'smaller'
. In the latter case, try harder to find a permutation representation of small degree.seed
–None
or an integer specifying the seed to fix results depending on pseudo-random-numbers. Here it makes sense to be used with respect to the'smaller'
option, since gap produces random output in that context.
OUTPUT:
A permutation group isomorphic to
self
. Thealgorithm='smaller'
option tries to return an isomorphic group of low degree, but is not guaranteed to find the smallest one and must not even differ from the one obtained without the option. In that case repeating the invocation may help (see the example below).EXAMPLES:
sage: MS = MatrixSpace(GF(2), 5, 5) sage: A = MS([[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]) sage: G = MatrixGroup([A]) sage: G.as_permutation_group().order() 2
A finite subgroup of GL(12,Z) as a permutation group:
sage: imf = libgap.function_factory('ImfMatrixGroup') sage: GG = imf( 12, 3 ) sage: G = MatrixGroup(GG.GeneratorsOfGroup()) sage: G.cardinality() 21499084800 sage: P = G.as_permutation_group() sage: Psmaller = G.as_permutation_group(algorithm="smaller", seed=6) sage: P == Psmaller # see the note below True sage: Psmaller = G.as_permutation_group(algorithm="smaller") sage: P == Psmaller False sage: P.cardinality() 21499084800 sage: P.degree() 144 sage: Psmaller.cardinality() 21499084800 sage: Psmaller.degree() 80
Note
In this case, the “smaller” option returned an isomorphic group of lower degree. The above example used GAP’s library of irreducible maximal finite (“imf”) integer matrix groups to construct the MatrixGroup G over GF(7). The section “Irreducible Maximal Finite Integral Matrix Groups” in the GAP reference manual has more details.
Note
Concerning the option
algorithm='smaller'
you should note the following from GAP documentation: “The methods used might involve the use of random elements and the permutation representation (or even the degree of the representation) is not guaranteed to be the same for different calls of SmallerDegreePermutationRepresentation.”To obtain a reproducible result the optional argument
seed
may be used as in the example above.
- invariant_generators()¶
Return invariant ring generators.
Computes generators for the polynomial ring \(F[x_1,\ldots,x_n]^G\), where \(G\) in \(GL(n,F)\) is a finite matrix group.
In the “good characteristic” case the polynomials returned form a minimal generating set for the algebra of \(G\)-invariant polynomials. In the “bad” case, the polynomials returned are primary and secondary invariants, forming a not necessarily minimal generating set for the algebra of \(G\)-invariant polynomials.
ALGORITHM:
Wraps Singular’s
invariant_algebra_reynolds
andinvariant_ring
infinvar.lib
.EXAMPLES:
sage: F = GF(7); MS = MatrixSpace(F,2,2) sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])] sage: G = MatrixGroup(gens) sage: G.invariant_generators() [x1^7*x2 - x1*x2^7, x1^12 - 2*x1^9*x2^3 - x1^6*x2^6 + 2*x1^3*x2^9 + x2^12, x1^18 + 2*x1^15*x2^3 + 3*x1^12*x2^6 + 3*x1^6*x2^12 - 2*x1^3*x2^15 + x2^18] sage: q = 4; a = 2 sage: MS = MatrixSpace(QQ, 2, 2) sage: gen1 = [[1/a,(q-1)/a],[1/a, -1/a]]; gen2 = [[1,0],[0,-1]]; gen3 = [[-1,0],[0,1]] sage: G = MatrixGroup([MS(gen1),MS(gen2),MS(gen3)]) sage: G.cardinality() 12 sage: G.invariant_generators() [x1^2 + 3*x2^2, x1^6 + 15*x1^4*x2^2 + 15*x1^2*x2^4 + 33*x2^6] sage: F = CyclotomicField(8) sage: z = F.gen() sage: a = z+1/z sage: b = z^2 sage: MS = MatrixSpace(F,2,2) sage: g1 = MS([[1/a, 1/a], [1/a, -1/a]]) sage: g2 = MS([[-b, 0], [0, b]]) sage: G=MatrixGroup([g1,g2]) sage: G.invariant_generators() [x1^4 + 2*x1^2*x2^2 + x2^4, x1^5*x2 - x1*x2^5, x1^8 + 28/9*x1^6*x2^2 + 70/9*x1^4*x2^4 + 28/9*x1^2*x2^6 + x2^8]
AUTHORS:
David Joyner, Simon King and Martin Albrecht.
REFERENCES:
Singular reference manual
S. King, “Minimal Generating Sets of non-modular invariant rings of finite groups”, arXiv math/0703035.
- invariants_of_degree(deg, chi=None, R=None)¶
Return the (relative) invariants of given degree for this group.
For this group, compute the invariants of degree
deg
with respect to the group characterchi
. The method is to project each possible monomial of degreedeg
via the Reynolds operator. Note that if the polynomial ringR
is specified it’s base ring may be extended if the resulting invariant is defined over a bigger field.INPUT:
degree
– a positive integerchi
– (default: trivial character) a linear group character of this groupR
– (optional) a polynomial ring
OUTPUT: list of polynomials
EXAMPLES:
sage: Gr = MatrixGroup(SymmetricGroup(2)) sage: sorted(Gr.invariants_of_degree(3)) [x0^2*x1 + x0*x1^2, x0^3 + x1^3] sage: R.<x,y> = QQ[] sage: sorted(Gr.invariants_of_degree(4, R=R)) [x^2*y^2, x^3*y + x*y^3, x^4 + y^4]
sage: R.<x,y,z> = QQ[] sage: Gr = MatrixGroup(DihedralGroup(3)) sage: ct = Gr.character_table() sage: chi = Gr.character(ct[0]) sage: all(f(*(g.matrix()*vector(R.gens()))) == chi(g)*f ....: for f in Gr.invariants_of_degree(3, R=R, chi=chi) for g in Gr) True
sage: i = GF(7)(3) sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]]) sage: G.invariants_of_degree(25) []
sage: G = MatrixGroup(SymmetricGroup(5)) sage: R = QQ['x,y'] sage: G.invariants_of_degree(3, R=R) Traceback (most recent call last): ... TypeError: number of variables in polynomial ring must match size of matrices
sage: K.<i> = CyclotomicField(4) sage: G = MatrixGroup(CyclicPermutationGroup(3)) sage: chi = G.character(G.character_table()[1]) sage: R.<x,y,z> = K[] sage: sorted(G.invariants_of_degree(2, R=R, chi=chi)) [x*y + (-2*izeta3^3 - 3*izeta3^2 - 8*izeta3 - 4)*x*z + (2*izeta3^3 + 3*izeta3^2 + 8*izeta3 + 3)*y*z, x^2 + (2*izeta3^3 + 3*izeta3^2 + 8*izeta3 + 3)*y^2 + (-2*izeta3^3 - 3*izeta3^2 - 8*izeta3 - 4)*z^2]
sage: S3 = MatrixGroup(SymmetricGroup(3)) sage: chi = S3.character(S3.character_table()[0]) sage: sorted(S3.invariants_of_degree(5, chi=chi)) [x0^3*x1^2 - x0^2*x1^3 - x0^3*x2^2 + x1^3*x2^2 + x0^2*x2^3 - x1^2*x2^3, x0^4*x1 - x0*x1^4 - x0^4*x2 + x1^4*x2 + x0*x2^4 - x1*x2^4]
- module_composition_factors(algorithm=None)¶
Return a list of triples consisting of [base field, dimension, irreducibility], for each of the Meataxe composition factors modules. The
algorithm="verbose"
option returns more information, but in Meataxe notation.EXAMPLES:
sage: F = GF(3); MS = MatrixSpace(F,4,4) sage: M = MS(0) sage: M[0,1]=1;M[1,2]=1;M[2,3]=1;M[3,0]=1 sage: G = MatrixGroup([M]) sage: G.module_composition_factors() [(Finite Field of size 3, 1, True), (Finite Field of size 3, 1, True), (Finite Field of size 3, 2, True)] sage: F = GF(7); MS = MatrixSpace(F,2,2) sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])] sage: G = MatrixGroup(gens) sage: G.module_composition_factors() [(Finite Field of size 7, 2, True)]
Type
G.module_composition_factors(algorithm='verbose')
to get a more verbose version.For more on MeatAxe notation, see https://www.gap-system.org/Manuals/doc/ref/chap69.html
- molien_series(chi=None, return_series=True, prec=20, variable='t')¶
Compute the Molien series of this finite group with respect to the character
chi
. It can be returned either as a rational function in one variable or a power series in one variable. The base field must be a finite field, the rationals, or a cyclotomic field.Note that the base field characteristic cannot divide the group order (i.e., the non-modular case).
ALGORITHM:
For a finite group \(G\) in characteristic zero we construct the Molien series as
\[\frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\text{det}(I-tg)},\]where \(I\) is the identity matrix and \(t\) an indeterminate.
For characteristic \(p\) not dividing the order of \(G\), let \(k\) be the base field and \(N\) the order of \(G\). Define \(\lambda\) as a primitive \(N\)-th root of unity over \(k\) and \(\omega\) as a primitive \(N\)-th root of unity over \(\QQ\). For each \(g \in G\) define \(k_i(g)\) to be the positive integer such that \(e_i = \lambda^{k_i(g)}\) for each eigenvalue \(e_i\) of \(g\). Then the Molien series is computed as
\[\frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\prod_{i=1}^n(1 - t\omega^{k_i(g)})},\]where \(t\) is an indeterminant. [Dec1998]
INPUT:
chi
– (default: trivial character) a linear group character of this groupreturn_series
– boolean (default:True
) ifTrue
, then returns the Molien series as a power series,False
as a rational functionprec
– integer (default: 20); power series default precisionvariable
– string (default:'t'
); Variable name for the Molien series
OUTPUT: single variable rational function or power series with integer coefficients
EXAMPLES:
sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series() Traceback (most recent call last): ... NotImplementedError: only implemented for finite groups sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series() Traceback (most recent call last): ... NotImplementedError: characteristic cannot divide group order
Tetrahedral Group:
sage: K.<i> = CyclotomicField(4) sage: Tetra = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0]) sage: Tetra.molien_series(prec=30) 1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30) sage: mol = Tetra.molien_series(return_series=False); mol (t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1) sage: mol.parent() Fraction Field of Univariate Polynomial Ring in t over Integer Ring sage: chi = Tetra.character(Tetra.character_table()[1]) sage: Tetra.molien_series(chi, prec=30, variable='u') u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36) sage: chi = Tetra.character(Tetra.character_table()[2]) sage: Tetra.molien_series(chi) t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)
sage: S3 = MatrixGroup(SymmetricGroup(3)) sage: mol = S3.molien_series(prec=10); mol 1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^10) sage: mol.parent() Power Series Ring in t over Integer Ring
Octahedral Group:
sage: K.<v> = CyclotomicField(8) sage: a = v-v^3 #sqrt(2) sage: i = v^2 sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,(1-i)/a]) sage: Octa.molien_series(prec=30) 1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)
Icosahedral Group:
sage: K.<v> = CyclotomicField(10) sage: z5 = v^2 sage: i = z5^5 sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5) sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]]) sage: Ico.molien_series(prec=40) 1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)
sage: G = MatrixGroup(CyclicPermutationGroup(3)) sage: chi = G.character(G.character_table()[1]) sage: G.molien_series(chi, prec=10) t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10 + O(t^11)
sage: K = GF(5) sage: S = MatrixGroup(SymmetricGroup(4)) sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m in S.gens()]) sage: G.molien_series(return_series=False) 1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)
sage: i = GF(7)(3) sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]]) sage: chi = G.character(G.character_table()[4]) sage: G.molien_series(chi) 3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
- reynolds_operator(poly, chi=None)¶
Compute the Reynolds operator of this finite group \(G\).
This is the projection from a polynomial ring to the ring of relative invariants [Stu1993]. If possible, the invariant is returned defined over the base field of the given polynomial
poly
, otherwise, it is returned over the compositum of the fields involved in the computation. Only implemented for absolute fields.ALGORITHM:
Let \(K[x]\) be a polynomial ring and \(\chi\) a linear character for \(G\). Let
be the ring of invariants of \(G\) relative to \(\chi\). Then the Reynold’s operator is a map \(R\) from \(K[x]\) into \(K[x]^G_{\chi}\) defined by
INPUT:
poly
– a polynomialchi
– (default: trivial character) a linear group character of this group
OUTPUT: an invariant polynomial relative to \(\chi\)
AUTHORS:
Rebecca Lauren Miller and Ben Hutz
EXAMPLES:
sage: S3 = MatrixGroup(SymmetricGroup(3)) sage: R.<x,y,z> = QQ[] sage: f = x*y*z^3 sage: S3.reynolds_operator(f) 1/3*x^3*y*z + 1/3*x*y^3*z + 1/3*x*y*z^3
sage: G = MatrixGroup(CyclicPermutationGroup(4)) sage: chi = G.character(G.character_table()[3]) sage: K.<v> = CyclotomicField(4) sage: R.<x,y,z,w> = K[] sage: G.reynolds_operator(x, chi) 1/4*x + (1/4*v)*y - 1/4*z + (-1/4*v)*w sage: chi = G.character(G.character_table()[2]) sage: R.<x,y,z,w> = QQ[] sage: G.reynolds_operator(x*y, chi) 1/4*x*y + (-1/4*zeta4)*y*z + (1/4*zeta4)*x*w - 1/4*z*w
sage: K.<i> = CyclotomicField(4) sage: G = MatrixGroup(CyclicPermutationGroup(3)) sage: chi = G.character(G.character_table()[1]) sage: R.<x,y,z> = K[] sage: G.reynolds_operator(x*y^5, chi) 1/3*x*y^5 + (-2/3*izeta3^3 - izeta3^2 - 8/3*izeta3 - 4/3)*x^5*z + (2/3*izeta3^3 + izeta3^2 + 8/3*izeta3 + 1)*y*z^5 sage: R.<x,y,z> = QQbar[] sage: G.reynolds_operator(x*y^5, chi) 1/3*x*y^5 + (-0.1666666666666667? + 0.2886751345948129?*I)*x^5*z + (-0.1666666666666667? - 0.2886751345948129?*I)*y*z^5
sage: K.<i> = CyclotomicField(4) sage: Tetra = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0]) sage: chi = Tetra.character(Tetra.character_table()[4]) sage: L.<v> = QuadraticField(-3) sage: R.<x,y> = L[] sage: Tetra.reynolds_operator(x^4) 0 sage: Tetra.reynolds_operator(x^4, chi) 1/4*x^4 + (1/2*v)*x^2*y^2 + 1/4*y^4 sage: R.<x>=L[] sage: LL.<w> = L.extension(x^2+v) sage: R.<x,y> = LL[] sage: Tetra.reynolds_operator(x^4, chi) Traceback (most recent call last): ... NotImplementedError: only implemented for absolute fields
sage: G = MatrixGroup(DihedralGroup(4)) sage: chi = G.character(G.character_table()[1]) sage: R.<x,y> = QQ[] sage: f = x^4 sage: G.reynolds_operator(f, chi) Traceback (most recent call last): ... TypeError: number of variables in polynomial must match size of matrices sage: R.<x,y,z,w> = QQ[] sage: f = x^3*y sage: G.reynolds_operator(f, chi) 1/8*x^3*y - 1/8*x*y^3 + 1/8*y^3*z - 1/8*y*z^3 - 1/8*x^3*w + 1/8*z^3*w + 1/8*x*w^3 - 1/8*z*w^3
Characteristic p>0 examples:
sage: G = MatrixGroup([[0,1,1,0]]) sage: R.<w,x> = GF(2)[] sage: G.reynolds_operator(x) Traceback (most recent call last): ... NotImplementedError: not implemented when characteristic divides group order
sage: i = GF(7)(3) sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]]) sage: chi = G.character(G.character_table()[4]) sage: R.<w,x> = GF(7)[] sage: f = w^5*x + x^6 sage: G.reynolds_operator(f, chi) Traceback (most recent call last): ... NotImplementedError: nontrivial characters not implemented for characteristic > 0 sage: G.reynolds_operator(f) x^6
sage: K = GF(3^2,'t') sage: G = MatrixGroup([matrix(K,2,2, [0,K.gen(),1,0])]) sage: R.<x,y> = GF(3)[] sage: G.reynolds_operator(x^8) -x^8 - y^8
sage: K = GF(3^2,'t') sage: G = MatrixGroup([matrix(GF(3),2,2, [0,1,1,0])]) sage: R.<x,y> = K[] sage: f = -K.gen()*x sage: G.reynolds_operator(f) (t)*x + (t)*y
- class sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic(degree, base_ring, generator_matrices, category=None)¶
Bases:
sage.groups.matrix_gps.matrix_group.MatrixGroup_generic
- gen(i)¶
Return the \(i\)-th generator
OUTPUT:
The \(i\)-th generator of the group.
EXAMPLES:
sage: H = GL(2, GF(3)) sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]]) sage: G = H.subgroup([h1, h2]) sage: G.gen(0) [1 0] [2 1] sage: G.gen(0).matrix() == h1.matrix() True
- gens()¶
Return the generators of the matrix group.
EXAMPLES:
sage: F = GF(3); MS = MatrixSpace(F,2,2) sage: gens = [MS([[1,0],[0,1]]), MS([[1,1],[0,1]])] sage: G = MatrixGroup(gens) sage: gens[0] in G True sage: gens = G.gens() sage: gens[0] in G True sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])] sage: F = GF(5); MS = MatrixSpace(F,2,2) sage: G = MatrixGroup([MS(1), MS([1,2,3,4])]) sage: G Matrix group over Finite Field of size 5 with 2 generators ( [1 0] [1 2] [0 1], [3 4] ) sage: G.gens() ( [1 0] [1 2] [0 1], [3 4] )
- ngens()¶
Return the number of generators
OUTPUT:
An integer. The number of generators.
EXAMPLES:
sage: H = GL(2, GF(3)) sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]]) sage: G = H.subgroup([h1, h2]) sage: G.ngens() 2
- sage.groups.matrix_gps.finitely_generated.MatrixGroup(*gens, **kwds)¶
Return the matrix group with given generators.
INPUT:
*gens
– matrices, or a single list/tuple/iterable of matrices, or a matrix group.check
– boolean keyword argument (optional, default:True
). Whether to check that each matrix is invertible.
EXAMPLES:
sage: F = GF(5) sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])] sage: G = MatrixGroup(gens); G Matrix group over Finite Field of size 5 with 2 generators ( [1 2] [1 1] [4 1], [0 1] )
In the second example, the generators are a matrix over \(\ZZ\), a matrix over a finite field, and the integer \(2\). Sage determines that they both canonically map to matrices over the finite field, so creates that matrix group there:
sage: gens = [matrix(2,[1,2, -1, 1]), matrix(GF(7), 2, [1,1, 0,1]), 2] sage: G = MatrixGroup(gens); G Matrix group over Finite Field of size 7 with 3 generators ( [1 2] [1 1] [2 0] [6 1], [0 1], [0 2] )
Each generator must be invertible:
sage: G = MatrixGroup([matrix(ZZ,2,[1,2,3,4])]) Traceback (most recent call last): ... ValueError: each generator must be an invertible matrix sage: F = GF(5); MS = MatrixSpace(F,2,2) sage: MatrixGroup([MS.0]) Traceback (most recent call last): ... ValueError: each generator must be an invertible matrix sage: MatrixGroup([MS.0], check=False) # works formally but is mathematical nonsense Matrix group over Finite Field of size 5 with 1 generators ( [1 0] [0 0] )
Some groups are not supported, or do not have much functionality implemented:
sage: G = SL(0, QQ) Traceback (most recent call last): ... ValueError: the degree must be at least 1 sage: SL2C = SL(2, CC); SL2C Special Linear Group of degree 2 over Complex Field with 53 bits of precision sage: SL2C.gens() Traceback (most recent call last): ... AttributeError: 'LinearMatrixGroup_generic_with_category' object has no attribute 'gens'
- sage.groups.matrix_gps.finitely_generated.QuaternionMatrixGroupGF3()¶
The quaternion group as a set of \(2\times 2\) matrices over \(GF(3)\).
OUTPUT:
A matrix group consisting of \(2\times 2\) matrices with elements from the finite field of order 3. The group is the quaternion group, the nonabelian group of order 8 that is not isomorphic to the group of symmetries of a square (the dihedral group \(D_4\)).
Note
This group is most easily available via
groups.matrix.QuaternionGF3()
.EXAMPLES:
The generators are the matrix representations of the elements commonly called \(I\) and \(J\), while \(K\) is the product of \(I\) and \(J\).
sage: from sage.groups.matrix_gps.finitely_generated import QuaternionMatrixGroupGF3 sage: Q = QuaternionMatrixGroupGF3() sage: Q.order() 8 sage: aye = Q.gens()[0]; aye [1 1] [1 2] sage: jay = Q.gens()[1]; jay [2 1] [1 1] sage: kay = aye*jay; kay [0 2] [1 0]
- sage.groups.matrix_gps.finitely_generated.normalize_square_matrices(matrices)¶
Find a common space for all matrices.
OUTPUT:
A list of matrices, all elements of the same matrix space.
EXAMPLES:
sage: from sage.groups.matrix_gps.finitely_generated import normalize_square_matrices sage: m1 = [[1,2],[3,4]] sage: m2 = [2, 3, 4, 5] sage: m3 = matrix(QQ, [[1/2,1/3],[1/4,1/5]]) sage: m4 = MatrixGroup(m3).gen(0) sage: normalize_square_matrices([m1, m2, m3, m4]) [ [1 2] [2 3] [1/2 1/3] [1/2 1/3] [3 4], [4 5], [1/4 1/5], [1/4 1/5] ]