Valuations on polynomial rings based on \(\phi\)-adic expansions

This file implements a base class for discrete valuations on polynomial rings, defined by a \(\phi\)-adic expansion.

AUTHORS:

  • Julian Rüth (2013-04-15): initial version

EXAMPLES:

The Gauss valuation is a simple example of a valuation that relies on \(\phi\)-adic expansions:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))

In this case, \(\phi = x\), so the expansion simply lists the coefficients of the polynomial:

sage: f = x^2 + 2*x + 2
sage: list(v.coefficients(f))
[2, 2, 1]

Often only the first few coefficients are necessary in computations, so for performance reasons, coefficients are computed lazily:

sage: v.coefficients(f)
<generator object ...coefficients at 0x...>

Another example of a DevelopingValuation is an augmented valuation:

sage: w = v.augmentation(x^2 + x + 1, 3)

Here, the expansion lists the remainders of repeated division by \(x^2 + x + 1\):

sage: list(w.coefficients(f))
[x + 1, 1]
class sage.rings.valuation.developing_valuation.DevelopingValuation(parent, phi)

Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Abstract base class for a discrete valuation of polynomials defined over the polynomial ring domain by the \(\phi\)-adic development.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(7))
coefficients(f)

Return the \(\phi\)-adic expansion of f.

INPUT:

  • f – a monic polynomial in the domain of this valuation

OUTPUT:

An iterator \(f_0, f_1, \dots, f_n\) of polynomials in the domain of this valuation such that \(f=\sum_i f_i\phi^i\)

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: list(v.coefficients(f)) # note that these constants are in the polynomial ring
[1 + 2 + O(2^5), 2 + O(2^6), 1 + O(2^5)]
sage: v = v.augmentation( x^2 + x + 1, 1)
sage: list(v.coefficients(f))
[(1 + O(2^5))*x + 2 + O(2^5), 1 + O(2^5)]
effective_degree(f, valuations=None)

Return the effective degree of f with respect to this valuation.

The effective degree of \(f\) is the largest \(i\) such that the valuation of \(f\) and the valuation of \(f_i\phi^i\) in the development \(f=\sum_j f_j\phi^j\) coincide (see [Mac1936II] p.497.)

INPUT:

  • f – a non-zero polynomial in the domain of this valuation

EXAMPLES:

sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.effective_degree(x)
1
sage: v.effective_degree(2*x + 1)
0
newton_polygon(f, valuations=None)

Return the newton polygon of the \(\phi\)-adic development of f.

INPUT:

  • f – a polynomial in the domain of this valuation

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: v.newton_polygon(f)
Finite Newton polygon with 2 vertices: (0, 0), (2, 0)

sage: v = v.augmentation( x^2 + x + 1, 1)
sage: v.newton_polygon(f)
Finite Newton polygon with 2 vertices: (0, 0), (1, 1)
sage: v.newton_polygon( f * v.phi()^3 )
Finite Newton polygon with 2 vertices: (3, 3), (4, 4)
phi()

Return the polynomial \(\phi\), the key polynomial of this valuation.

EXAMPLES:

sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.phi()
(1 + O(2^5))*x
valuations(f)

Return the valuations of the \(f_i\phi^i\) in the expansion \(f=\sum f_i\phi^i\).

INPUT:

  • f – a polynomial in the domain of this valuation

OUTPUT:

A list, each entry a rational numbers or infinity, the valuations of \(f_0, f_1\phi, \dots\)

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S, R.valuation())
sage: f = x^2 + 2*x + 16
sage: list(v.valuations(f))
[4, 1, 0]