Loop Crystals¶
- class sage.categories.loop_crystals.KirillovReshetikhinCrystals(s=None)¶
Bases:
sage.categories.category_singleton.Category_singleton
Category of Kirillov-Reshetikhin crystals.
- class ElementMethods¶
Bases:
object
- energy_function()¶
Return the energy function of
self
.Let \(B\) be a KR crystal. Let \(b^{\sharp}\) denote the unique element such that \(\varphi(b^{\sharp}) = \ell \Lambda_0\) with \(\ell = \min \{ \langle c, \varphi(b) \mid b \in B \}\). Let \(u_B\) denote the maximal element of \(B\). The energy of \(b \in B\) is given by
\[D(b) = H(b \otimes b^{\sharp}) - H(u_B \otimes b^{\sharp}),\]where \(H\) is the
local energy function
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1) sage: for x in K.classically_highest_weight_vectors(): ....: x, x.energy_function() ([], 1) ([[1], [2]], 0) sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,2) sage: for x in K.classically_highest_weight_vectors(): ....: x, x.energy_function() ([], 2) ([[1]], 1) ([[1, 1]], 0)
- lusztig_involution()¶
Return the result of the classical Lusztig involution on
self
.EXAMPLES:
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR') sage: mg = KRT.module_generators[1] sage: mg.lusztig_involution() [[-2, -2, 1], [-1, -1, 2]] sage: elt = mg.f_string([2,1,3,2]); elt [[3, -2, 1], [4, -1, 2]] sage: elt.lusztig_involution() [[-4, -2, 1], [-3, -1, 2]]
- class ParentMethods¶
Bases:
object
- R_matrix(K)¶
Return the combinatorial \(R\)-matrix of
self
toK
.The combinatorial \(R\)-matrix is the affine crystal isomorphism \(R : L \otimes K \to K \otimes L\) which maps \(u_{L} \otimes u_K\) to \(u_K \otimes u_{L}\), where \(u_K\) is the unique element in \(K = B^{r,s}\) of weight \(s\Lambda_r - s c \Lambda_0\) (see
maximal_vector()
).INPUT:
self
– a crystal \(L\)K
– a Kirillov-Reshetikhin crystal of the same type as \(L\)
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: L = crystals.KirillovReshetikhin(['A',2,1],1,2) sage: f = K.R_matrix(L) sage: [[b,f(b)] for b in crystals.TensorProduct(K,L)] [[[[[1]], [[1, 1]]], [[[1, 1]], [[1]]]], [[[[1]], [[1, 2]]], [[[1, 1]], [[2]]]], [[[[1]], [[2, 2]]], [[[1, 2]], [[2]]]], [[[[1]], [[1, 3]]], [[[1, 1]], [[3]]]], [[[[1]], [[2, 3]]], [[[1, 2]], [[3]]]], [[[[1]], [[3, 3]]], [[[1, 3]], [[3]]]], [[[[2]], [[1, 1]]], [[[1, 2]], [[1]]]], [[[[2]], [[1, 2]]], [[[2, 2]], [[1]]]], [[[[2]], [[2, 2]]], [[[2, 2]], [[2]]]], [[[[2]], [[1, 3]]], [[[2, 3]], [[1]]]], [[[[2]], [[2, 3]]], [[[2, 2]], [[3]]]], [[[[2]], [[3, 3]]], [[[2, 3]], [[3]]]], [[[[3]], [[1, 1]]], [[[1, 3]], [[1]]]], [[[[3]], [[1, 2]]], [[[1, 3]], [[2]]]], [[[[3]], [[2, 2]]], [[[2, 3]], [[2]]]], [[[[3]], [[1, 3]]], [[[3, 3]], [[1]]]], [[[[3]], [[2, 3]]], [[[3, 3]], [[2]]]], [[[[3]], [[3, 3]]], [[[3, 3]], [[3]]]]] sage: K = crystals.KirillovReshetikhin(['D',4,1],1,1) sage: L = crystals.KirillovReshetikhin(['D',4,1],2,1) sage: f = K.R_matrix(L) sage: T = crystals.TensorProduct(K,L) sage: b = T( K(rows=[[1]]), L(rows=[]) ) sage: f(b) [[[2], [-2]], [[1]]]
Alternatively, one can compute the combinatorial \(R\)-matrix using the isomorphism method of digraphs:
sage: K1 = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: K2 = crystals.KirillovReshetikhin(['A',2,1],2,1) sage: T1 = crystals.TensorProduct(K1,K2) sage: T2 = crystals.TensorProduct(K2,K1) sage: T1.digraph().is_isomorphic(T2.digraph(), edge_labels=True, certificate=True) #todo: not implemented (see #10904 and #10549) (True, {[[[1]], [[2], [3]]]: [[[1], [3]], [[2]]], [[[3]], [[2], [3]]]: [[[2], [3]], [[3]]], [[[3]], [[1], [3]]]: [[[1], [3]], [[3]]], [[[1]], [[1], [3]]]: [[[1], [3]], [[1]]], [[[1]], [[1], [2]]]: [[[1], [2]], [[1]]], [[[2]], [[1], [2]]]: [[[1], [2]], [[2]]], [[[3]], [[1], [2]]]: [[[2], [3]], [[1]]], [[[2]], [[1], [3]]]: [[[1], [2]], [[3]]], [[[2]], [[2], [3]]]: [[[2], [3]], [[2]]]})
- affinization()¶
Return the corresponding affinization crystal of
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: K.affinization() Affinization of Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1) sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1, model='KR') sage: K.affinization() Affinization of Kirillov-Reshetikhin tableaux of type ['A', 2, 1] and shape (1, 1)
- b_sharp()¶
Return the element \(b^{\sharp}\) of
self
.Let \(B\) be a KR crystal. The element \(b^{\sharp}\) is the unique element such that \(\varphi(b^{\sharp}) = \ell \Lambda_0\) with \(\ell = \min \{ \langle c, \varphi(b) \rangle \mid b \in B \}\).
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1) sage: K.b_sharp() [] sage: K.b_sharp().Phi() Lambda[0] sage: K = crystals.KirillovReshetikhin(['C',3,1], 1,3) sage: K.b_sharp() [[-1]] sage: K.b_sharp().Phi() 2*Lambda[0] sage: K = crystals.KirillovReshetikhin(['D',6,2], 2,2) sage: K.b_sharp() # long time [] sage: K.b_sharp().Phi() # long time 2*Lambda[0]
- cardinality()¶
Return the cardinality of
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1) sage: K.cardinality() 27 sage: K = crystals.KirillovReshetikhin(['C',6,1], 4,3) sage: K.cardinality() 4736732
- classical_decomposition()¶
Return the classical decomposition of
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2) sage: K.classical_decomposition() The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]
- classically_highest_weight_vectors()¶
Return the classically highest weight elements of
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1) sage: K.classically_highest_weight_vectors() ([(1,)],)
- is_perfect(ell=None)¶
Check if
self
is a perfect crystal of levelell
.A crystal \(\mathcal{B}\) is perfect of level \(\ell\) if:
\(\mathcal{B}\) is isomorphic to the crystal graph of a finite-dimensional \(U_q'(\mathfrak{g})\)-module.
\(\mathcal{B} \otimes \mathcal{B}\) is connected.
There exists a \(\lambda\in X\), such that \(\mathrm{wt}(\mathcal{B}) \subset \lambda + \sum_{i\in I} \ZZ_{\le 0} \alpha_i\) and there is a unique element in \(\mathcal{B}\) of classical weight \(\lambda\).
For all \(b \in \mathcal{B}\), \(\mathrm{level}(\varepsilon (b)) \geq \ell\).
For all \(\Lambda\) dominant weights of level \(\ell\), there exist unique elements \(b_{\Lambda}, b^{\Lambda} \in \mathcal{B}\), such that \(\varepsilon(b_{\Lambda}) = \Lambda = \varphi(b^{\Lambda})\).
Points (1)-(3) are known to hold. This method checks points (4) and (5).
If
self
is the Kirillov-Reshetikhin crystal \(B^{r,s}\), then it was proven for non-exceptional types in [FOS2010] that it is perfect if and only if \(s/c_r\) is an integer (where \(c_r\) is a constant related to the type of the crystal).It is conjectured this is true for all affine types.
INPUT:
ell
– (default: \(s / c_r\)) integer; the level
REFERENCES:
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: K.is_perfect() True sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1) sage: K.is_perfect() False sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2) sage: K.is_perfect() True sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,3) sage: K.is_perfect() True
Todo
Implement a version for tensor products of KR crystals.
- level()¶
Return the level of
self
whenself
is a perfect crystal.See also
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: K.level() 1 sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2) sage: K.level() 1 sage: K = crystals.KirillovReshetikhin(['D',4,1], 1, 3) sage: K.level() 3 sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1) sage: K.level() Traceback (most recent call last): ... ValueError: this crystal is not perfect
- local_energy_function(B)¶
Return the local energy function of
self
andB
.See
LocalEnergyFunction
for a definition.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1) sage: Kp = crystals.KirillovReshetikhin(['A',6,2], 1,1) sage: H = K.local_energy_function(Kp); H Local energy function of Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(2,1) tensor Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(1,1)
- maximal_vector()¶
Return the unique element of classical weight \(s \Lambda_r\) in
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['C',2,1],1,2) sage: K.maximal_vector() [[1, 1]] sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1) sage: K.maximal_vector() [(1,)] sage: K = crystals.KirillovReshetikhin(['D',4,1],2,1) sage: K.maximal_vector() [[1], [2]]
- module_generator()¶
Return the unique module generator of classical weight \(s \Lambda_r\) of the Kirillov-Reshetikhin crystal \(B^{r,s}\).
EXAMPLES:
sage: La = RootSystem(['G',2,1]).weight_space().fundamental_weights() sage: K = crystals.ProjectedLevelZeroLSPaths(La[1]) sage: K.module_generator() (-Lambda[0] + Lambda[1],)
- q_dimension(q=None, prec=None, use_product=False)¶
Return the \(q\)-dimension of
self
.The \(q\)-dimension of a KR crystal is defined as the \(q\)-dimension of the underlying classical crystal.
EXAMPLES:
sage: KRC = crystals.KirillovReshetikhin(['A',2,1], 2,2) sage: KRC.q_dimension() q^4 + q^3 + 2*q^2 + q + 1 sage: KRC = crystals.KirillovReshetikhin(['D',4,1], 2,1) sage: KRC.q_dimension() q^10 + q^9 + 3*q^8 + 3*q^7 + 4*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 3*q^2 + q + 2
- r()¶
Return the value \(r\) in
self
written as \(B^{r,s}\).EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4) sage: K.r() 2
- s()¶
Return the value \(s\) in
self
written as \(B^{r,s}\).EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4) sage: K.s() 4
- class TensorProducts(category, *args)¶
Bases:
sage.categories.tensor.TensorProductsCategory
The category of tensor products of Kirillov-Reshetikhin crystals.
- class ElementMethods¶
Bases:
object
- affine_grading()¶
Return the affine grading of
self
.The affine grading is calculated by finding a path from
self
to a ground state path (using the helper methode_string_to_ground_state()
) and counting the number of affine Kashiwara operators \(e_0\) applied on the way.OUTPUT: an integer
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K) sage: t = T.module_generators[0] sage: t.affine_grading() 1 sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K,K) sage: hw = T.classically_highest_weight_vectors() sage: for b in hw: ....: print("{} {}".format(b, b.affine_grading())) [[[1]], [[1]], [[1]]] 3 [[[2]], [[1]], [[1]]] 2 [[[1]], [[2]], [[1]]] 1 [[[3]], [[2]], [[1]]] 0 sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1) sage: T = crystals.TensorProduct(K,K,K) sage: hw = T.classically_highest_weight_vectors() sage: for b in hw: ....: print("{} {}".format(b, b.affine_grading())) [[[1]], [[1]], [[1]]] 2 [[[2]], [[1]], [[1]]] 1 [[[-1]], [[1]], [[1]]] 1 [[[1]], [[2]], [[1]]] 1 [[[-2]], [[2]], [[1]]] 0 [[[1]], [[-1]], [[1]]] 0
- e_string_to_ground_state()¶
Return a string of integers in the index set \((i_1, \ldots, i_k)\) such that \(e_{i_k} \cdots e_{i_1}\) of
self
is the ground state.This method calculates a path from
self
to a ground state path using Demazure arrows as defined in Lemma 7.3 in [ST2011].OUTPUT: a tuple of integers \((i_1, \ldots, i_k)\)
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K) sage: t = T.module_generators[0] sage: t.e_string_to_ground_state() (0, 2) sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1) sage: T = crystals.TensorProduct(K,K) sage: t = T.module_generators[0]; t [[[1]], [[1]]] sage: t.e_string_to_ground_state() (0,) sage: x = t.e(0) sage: x.e_string_to_ground_state() () sage: y = t.f_string([1,2,1,1,0]); y [[[2]], [[1]]] sage: y.e_string_to_ground_state() ()
- energy_function(algorithm=None)¶
Return the energy function of
self
.ALGORITHM:
definition
Let \(T\) be a tensor product of Kirillov-Reshetikhin crystals. Let \(R_i\) and \(H_i\) be the combinatorial \(R\)-matrix and local energy functions, respectively, acting on the \(i\) and \(i+1\) factors. Let \(D_B\) be the energy function of a single Kirillov-Reshetikhin crystal. The energy function is given by
\[D = \sum_{j > i} H_i R_{i+1} R_{i+2} \cdots R_{j-1} + \sum_j D_B R_1 R_2 \cdots R_{j-1},\]where \(D_B\) acts on the rightmost factor.
grading
If
self
is an element of \(T\), a tensor product of perfect crystals of the same level, then use the affine grading to determine the energy. Specifically, let \(g\) denote the affine grading ofself
and \(d\) the affine grading of the maximal vector in \(T\). Then the energy ofself
is given by \(d - g\).For more details, see Theorem 7.5 in [ST2011].
INPUT:
algorithm
– (default:None
) use one of the following algorithms to determine the energy function:'definition'
- use the definition of the energy function;'grading'
- use the affine grading;
if not specified, then this uses
'grading'
if all factors are perfect of the same level and otherwise this uses'definition'
OUTPUT: an integer
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: T = crystals.TensorProduct(K,K,K) sage: hw = T.classically_highest_weight_vectors() sage: for b in hw: ....: print("{} {}".format(b, b.energy_function())) [[[1]], [[1]], [[1]]] 0 [[[2]], [[1]], [[1]]] 1 [[[1]], [[2]], [[1]]] 2 [[[3]], [[2]], [[1]]] 3 sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2) sage: T = crystals.TensorProduct(K,K) sage: hw = T.classically_highest_weight_vectors() sage: for b in hw: ....: print("{} {}".format(b, b.energy_function())) [[], []] 4 [[[1, 1]], []] 3 [[], [[1, 1]]] 1 [[[1, 1]], [[1, 1]]] 0 [[[1, 2]], [[1, 1]]] 1 [[[2, 2]], [[1, 1]]] 2 [[[-1, -1]], [[1, 1]]] 2 [[[1, -1]], [[1, 1]]] 2 [[[2, -1]], [[1, 1]]] 2 sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1) sage: T = crystals.TensorProduct(K) sage: t = T.module_generators[0] sage: t.energy_function('grading') Traceback (most recent call last): ... NotImplementedError: all crystals in the tensor product need to be perfect of the same level
- class ParentMethods¶
Bases:
object
- cardinality()¶
Return the cardinality of
self
.EXAMPLES:
sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2]]) sage: RC.cardinality() 100 sage: len(RC.list()) 100 sage: RC = RiggedConfigurations(['E', 7, 1], [[1,1]]) sage: RC.cardinality() 134 sage: len(RC.list()) 134 sage: RC = RiggedConfigurations(['B', 3, 1], [[2,2],[1,2]]) sage: RC.cardinality() 5130
- classically_highest_weight_vectors()¶
Return the classically highest weight elements of
self
.This works by using a backtracking algorithm since if \(b_2 \otimes b_1\) is classically highest weight then \(b_1\) is classically highest weight.
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K,K) sage: T.classically_highest_weight_vectors() ([[[1]], [[1]], [[1]]], [[[2]], [[1]], [[1]]], [[[1]], [[2]], [[1]]], [[[3]], [[2]], [[1]]])
- maximal_vector()¶
Return the maximal vector of
self
.EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K,K) sage: T.maximal_vector() [[[1]], [[1]], [[1]]]
- one_dimensional_configuration_sum(q=None, group_components=True)¶
Compute the one-dimensional configuration sum of
self
.INPUT:
q
– (default:None
) a variable orNone
; ifNone
, a variable \(q\) is set in the codegroup_components
– (default:True
) boolean; ifTrue
, then the terms are grouped by classical component
The one-dimensional configuration sum is the sum of the weights of all elements in the crystal weighted by the energy function.
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1) sage: T = crystals.TensorProduct(K,K) sage: T.one_dimensional_configuration_sum() B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]] + (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]] + B[-2*Lambda[2]] + (q+1)*B[Lambda[2]] sage: R.<t> = ZZ[] sage: T.one_dimensional_configuration_sum(t, False) B[-2*Lambda[1] + 2*Lambda[2]] + (t+1)*B[-Lambda[1]] + (t+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]] + B[-2*Lambda[2]] + (t+1)*B[Lambda[2]] sage: R = RootSystem(['A',2,1]) sage: La = R.weight_space().basis() sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) sage: LS.one_dimensional_configuration_sum() == T.one_dimensional_configuration_sum() # long time True
- extra_super_categories()¶
EXAMPLES:
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals sage: KirillovReshetikhinCrystals().TensorProducts().extra_super_categories() [Category of finite regular loop crystals]
- super_categories()¶
EXAMPLES:
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals sage: KirillovReshetikhinCrystals().super_categories() [Category of finite regular loop crystals]
- class sage.categories.loop_crystals.LocalEnergyFunction(B, Bp, normalization=0)¶
Bases:
sage.categories.map.Map
The local energy function.
Let \(B\) and \(B'\) be Kirillov-Reshetikhin crystals with maximal vectors \(u_B\) and \(u_{B'}\) respectively. The local energy function \(H : B \otimes B' \to \ZZ\) is the function which satisfies
\[\begin{split}H(e_0(b \otimes b')) = H(b \otimes b') + \begin{cases} 1 & \text{if } i = 0 \text{ and LL}, \\ -1 & \text{if } i = 0 \text{ and RR}, \\ 0 & \text{otherwise,} \end{cases}\end{split}\]where LL (resp. RR) denote \(e_0\) acts on the left (resp. right) on both \(b \otimes b'\) and \(R(b \otimes b')\), and normalized by \(H(u_B \otimes u_{B'}) = 0\).
INPUT:
B
– a Kirillov-Reshetikhin crystalBp
– a Kirillov-Reshetikhin crystalnormalization
– (default: 0) the normalization value
EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2) sage: K2 = crystals.KirillovReshetikhin(['C',2,1], 2,1) sage: H = K.local_energy_function(K2) sage: T = tensor([K, K2]) sage: hw = T.classically_highest_weight_vectors() sage: for b in hw: ....: b, H(b) ([[], [[1], [2]]], 1) ([[[1, 1]], [[1], [2]]], 0) ([[[2, -2]], [[1], [2]]], 1) ([[[1, -2]], [[1], [2]]], 1)
REFERENCES:
- class sage.categories.loop_crystals.LoopCrystals(s=None)¶
Bases:
sage.categories.category_singleton.Category_singleton
The category of \(U_q'(\mathfrak{g})\)-crystals, where \(\mathfrak{g}\) is of affine type.
The category is called loop crystals as we can also consider them as crystals corresponding to the loop algebra \(\mathfrak{g}_0[t]\), where \(\mathfrak{g}_0\) is the corresponding classical type.
EXAMPLES:
sage: from sage.categories.loop_crystals import LoopCrystals sage: C = LoopCrystals() sage: C Category of loop crystals sage: C.super_categories() [Category of crystals] sage: C.example() Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)
- class ParentMethods¶
Bases:
object
- digraph(subset=None, index_set=None)¶
Return the
DiGraph
associated toself
.INPUT:
subset
– (optional) a subset of vertices for which the digraph should be constructedindex_set
– (optional) the index set to draw arrows
EXAMPLES:
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1) sage: G = C.digraph() sage: G.latex_options() # optional - dot2tex LaTeX options for Digraph on 29 vertices: {...'edge_options': <function ... at ...>...} sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested (opens external window)
- weight_lattice_realization()¶
Return the weight lattice realization used to express weights of elements in
self
.The default is to use the non-extended affine weight lattice.
EXAMPLES:
sage: C = crystals.Letters(['A', 5]) sage: C.weight_lattice_realization() Ambient space of the Root system of type ['A', 5] sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1) sage: K.weight_lattice_realization() Weight lattice of the Root system of type ['A', 2, 1]
- example(n=3)¶
Return an example of Kirillov-Reshetikhin crystals, as per
Category.example()
.EXAMPLES:
sage: from sage.categories.loop_crystals import LoopCrystals sage: B = LoopCrystals().example(); B Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)
- super_categories()¶
EXAMPLES:
sage: from sage.categories.loop_crystals import LoopCrystals sage: LoopCrystals().super_categories() [Category of crystals]
- class sage.categories.loop_crystals.RegularLoopCrystals(s=None)¶
Bases:
sage.categories.category_singleton.Category_singleton
The category of regular \(U_q'(\mathfrak{g})\)-crystals, where \(\mathfrak{g}\) is of affine type.
- class ElementMethods¶
Bases:
object
- classical_weight()¶
Return the classical weight of
self
.EXAMPLES:
sage: R = RootSystem(['A',2,1]) sage: La = R.weight_space().basis() sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) sage: hw = LS.classically_highest_weight_vectors() sage: [(v.weight(), v.classical_weight()) for v in hw] [(-2*Lambda[0] + 2*Lambda[1], (2, 0, 0)), (-Lambda[0] + Lambda[2], (1, 1, 0))]
- super_categories()¶
EXAMPLES:
sage: from sage.categories.loop_crystals import RegularLoopCrystals sage: RegularLoopCrystals().super_categories() [Category of regular crystals, Category of loop crystals]